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Outline

◮ Basics of BP and BP for optimisation.

◮ BP for the assignment problem.

◮ Steps involved in making it rigorous.

◮ Other problems. Edge cover, traveling salesman problem,
many-to-one matchings, etc.



Belief Propagation (BP)

◮ An iterative and local algorithm for computing the marginal
probabilities of a graphical probability model

◮ Our interest is in probability models on n variables, denoted
x = (x1, . . . , xn), with a certain dependence structure.

p(x1, . . . , xn) = Z−1
∏

a∈F

Qa(xa).

◮ Qa(xa) is a factor indexed by a subset a ⊆ {1, . . . , n} and involves
the variables xa := (xi , i ∈ a).

◮ F is the index set of factors, Z is a normalisation.

◮ Factors specify the dependence structure. Assumed known.

◮ Also called a graphical model or a Markov random field.



Markov chain

p(x1, . . . , xn) = Q1(x1)

n
∏

i=2

Qi ,i−1(xi , xi−1).

◮ Factors: {1}, {i , i − 1}i≥2.

◮ Q1(x1) is the initial distribution.

◮ Qi ,i−1(xi , xi−1) is the transition probability matrix for the ith
transition, more commonly written as Qi |i−1(xi |xi−1).

◮ Z = 1.



Graphical model and marginal probabilities
◮ Example. Take n = 3. Each xi is binary. Suppose:

p(x1, x2, x3) ∝

initial beliefs
︷ ︸︸ ︷

Q1(x1) ·Q2(x2) ·Q3(x3) ·

a
︷ ︸︸ ︷

1{x1 = x2} ·

b
︷ ︸︸ ︷

1{x2 = x3}

Variable
nodes

Factor
nodes

x1

x2

x3

a

b

◮ This is a “factor graph” representation of the model, with variable
and factor nodes.

◮ Goal: compute the marginal probability p(x1).



Introducing BP

ax i

◮ By a suitable renormalisation, we can think of Qa as probability
distributions. (Factor a’s opinion on xi ’s distribution).

◮ If there were no other variable nodes, then each factor imposes an
“external field” on xi , and we get the marginal as a “compromise”:

p(xi ) = Z−1
∏

a∈F

Qa(xi )

◮ When there are other variable nodes, each factor node should convey
the “effective” external field it will impose on xi .



Introduce a cavity in the system

ax i ax i

◮ Removing factor a and its associated edges breaks this graph into
three components.

◮ Compute the associated variable node distributions, separately, on
each component and pass them to the removed factor node along
the corresponding removed edge.

◮ Then make the factor node pass, to xi , its belief about xi based on
what’s imposed by the other components.

◮ Do this repeatedly, and we have the BP algorithm.



BP : sum-product algorithm

ax i ax i

m
(t)
i→a(xi ) m̂

(t+1)
a→i (xi )

The messages are distributions or beliefs. ya = ((yi ′ , i
′ ∈ a, i ′ 6= i), yi ).

Factor node : m̂
(t+1)
a→i (xi ) = Z−1 ·

∑

ya:yi=xi

Qa(ya)
∏

i ′∼a,i ′ 6=i

m
(t)
i ′→a(yi ′).

Variable node : m
(t)
i→a(xi ) = Z−1 ·

∏

a′∼i ,a′ 6=a

m̂
(t)
a′→i (xi ).

Marginal : p(t)(xi ) = Z−1 ·
∏

a∼i

m̂
(t)
a→i(xi ).



Three natural questions

◮ Does the algorithm converge?

◮ Does it produce the correct answer?

◮ How many iterations?



BP works on trees

Theorem
On a tree of diameter d, BP converges after at most d steps to yield the
correct marginals.

For our initial example ...

x1

x2

x3

a

b

0.9

0.9

0.1 0.1

0.5

81/82

0.9

Converged marginal: p(x1 = 1) = 0.9.



Problems

◮ Loops.

x1

x2

x3

Must agree

Must agree

Must disagree

Locally consistent marginals, a belief of 0.5 for each,
but these cannot be the marginals of any global probability
distribution.

◮ Infinite trees. Nodes very far off, at infinity, may affect the marginal
at a given node.



BP for optimisation

◮ Suppose we want to find the maximum-likelihood configuration:

x∗ = argmax
x

p(x).

◮ Suppose we are able to compute max-marginals:

Mi (xi ) = max
y :yi=xi

p(y).

◮ Procedure to find ML configuration:
◮ Find M1(·). Find x∗

1 .
◮ New graphical model with x1 = x∗

1 . Compute max-marginals M2(·).
Find x∗

2 .
◮ . . .

◮ So it suffices to compute max-marginals.
How can BP be modified to do this?



Max-product algorithm

ax i ax i

m
(t)
i→a(xi ) m̂

(t+1)
a→i (xi )

Factor node : m̂
(t+1)
a→i (xi ) = Z−1 · max

ya :yi=xi



Qa(ya)
∏

i ′∼a,i ′ 6=i

m
(t)
i ′→a(yi ′)



 .

Variable node : m
(t)
i→a(xi ) = Z−1 ·

∏

a′∼i ,a′ 6=a

m̂
(t)
a′→i (xi ).

Max-marginal : M (t)(xi ) = Z−1 ·
∏

a∼i

m̂
(t)
a→i(xi ).



BP works on trees, again

Theorem
On a tree of diameter d, the max-product updates converge after at most
d steps to yield the correct max-marginals (upto a scale factor).

But same issues as before - cycles, infinite trees.



The min-sum algorithm and the energy cavity equations

◮ By writing the factors Qa(xa) = e−βEa(xa), we see that

p(x) = e−β
∑

a∈F Ea(xa)

◮ Maximum likelihood configuration is the one that minimises the
“cost” or “energy” function:

E (x) :=
∑

a∈F

Ea(xa)

Ground state.

◮ Replace beliefs by negative log-beliefs in the BP equations, and one
gets what is known as the min-sum algorithm. The associated BP
updates are called energy cavity equations.



Thus far ...

◮ Graphical models and factor graphs

◮ BP for marginals. The sum-product algorithm (via cavity)

◮ Works on trees. Questions when there are loops or the graph is
infinite.

◮ BP for ML. The max-product algorithm

◮ BP for ML. The min-sum algorithm and energy cavity equations.



BP for optimisation : optimal assignment

n jobs n machines

◮ Cij is cost of running job i on machine j .

◮ Goal: Each machine can take at most one job. Assign each job to a
machine so that total cost is minimized.

◮ Minimum weight perfect matching on the weighted Kn,n.
Solvable in (worst-case) O(n3) steps.

◮ On random instances, BP finds a near optimal solution with high
probability in O(n2) steps. Each node executes only O(n) steps.



The history of the assignment problem

◮ Very active since the 1960s. Kurtzberg (1962), Walkup (1979),
Karp (1987), Goemans and Kodialam (1989).

◮ 1987. Mezard and Parisi showed via a nonrigorous method that the
expected cost of minimum matching is ζ(2).

◮ 1992. Aldous showed that a limit exists.

◮ 2001. Aldous gave a rigorous proof that limit is ζ(2).

◮ 2005. Aldous and Bandopadhyay on RDEs in general.

◮ 2009. Salez and Shah on BP.



Relaxed assignment: the factor graph

◮ Variable aij : 1 if job i assigned to machine j , 0 otherwise

p({aij}) ∝
∏

i,j

e
−βaij (Cij−2γ) ·

∏

i

1







∑

j′

aij′ ≤ 1






·
∏

j

1

{
∑

i′

ai′j ≤ 1

}

◮ As γ → ∞, mass concentrates on perfect matchings
As β → ∞, mass further concentrates on minimum cost perfect
matchings.

n jobs n machines

◮ Variable nodes indexed by ij . Factor nodes indexed by i , j , and ij .

◮ Goal: Sample from the distribution, or find mode (for large γ and β).



BP equations (sum-product)

n jobs n machines

◮ Message from right to left:

Variable node:

mij→i (aij) = Z−1 · m̂j→ij(aij) · e
−βaij(Cij−2γ).

Machine factor node:

m̂j→ij (aij) = Z−1 ·
∑

{ai′ j}i′ :i′ 6=i

1







aij +
∑

i ′:i ′ 6=i

ai ′j ≤ 1







·
∏

i ′:i ′ 6=i

mi ′j→j (ai ′j).

◮ Similarly for message from left to right.

◮ Some simplification is possible.
◮ Variable node updates involve only one nontrivial factor node.
◮ Work with log-likelihoods.



BP equations after simplification

Define: φj→i as below, and φi→j similarly.

φj→i := γ +
1

β
log

(

m̂j→ij (aij = 1)

m̂j→ij (aij = 0)

)

.

The BP equations simplify to the following.

◮ Left to right:

φi→j = −
1

β
log



e−βγ +
∑

j′:j′ 6=j

eβ(−Cij′+φj′→i )





◮ Right to left:

φj→i = −
1

β
log



e−βγ +
∑

i ′:i ′ 6=i

eβ(−Ci′j+φi′→j )







The zero temperature limit

◮ Let γ → ∞ first and then β → ∞, we get:

φi→j = min
j′:j′ 6=j

[Cij′ − φj′→i ]

φj→i = min
i ′:i ′ 6=i

[Ci ′j − φi ′→j ]

◮ Proposal:
◮ Run the BP iterations as above until convergence.
◮ Interpret the converged values to put out the matching.

Each job i is matched to the minimising machine, i.e.,

π(i) = argmin
j

[Cij − φj→i ]

◮ The factor graph is full of loops, and our proposal is full of holes.



Hope in an ensemble viewpoint

◮ Random costs: {Cij} are independent with identical distribution,
e.g., Uniform[0,1]

◮ Beliefs, cavity variables, etc., are now random variables; they depend
on the realisation {Cij}

◮ What is the expected cost of the minimum weight matching?

◮ Further, let network size n → ∞

◮ What is the limiting expected cost of the minimum weight
matching?

◮ We have thrown in more complications. But there is hope in this
random infinite setting.



Loops disappear in an appropriate topology

n jobs n machines

◮ Cij independent and Uniform[0,1]

◮ From a typical job i ’s perspective, typical costs are O(1);
but

E

[

min
j

Cij

]

=
1

n + 1
= O

(

1

n

)

◮ Only links with cost O(1/n) matter



Locally tree-like

◮ Erase all links that cost more than, say, 10000/n

◮ The picture from a typical node, after re-scaling of surviving links

j

◮ Loops disappear in the scale of interest



Locally tree-like on the scaled graph

◮ Alternatively, scale all link costs by n. E.g., Uniform [0, n]

◮ Erase all links that cost more than, this time, ρ = 10000 = O(1)

◮ The picture from a typical node

j

◮ Loops disappear when graph distances of only O(1) are considered

◮ More precisely, Pr{there is no cycle of length ≤ ρ} = 1− O(1/n)



What about number of neighbours of the root?

j

◮ Number of one-hop neighbours within distance ρ:

n
∑

i=1

1{nCji ≤ ρ} = Bin(n, ρ/n) → Poi(ρ)



Local weak limit that describes the local neighbourhood

Theorem
The local neighbourhood from a typical node, on Kn,n with weights
scaled by n, has a limiting distribution identical to local neighbourhood
of root on the Poisson Weighted Infinite Tree (PWIT).

root

x 1 x 2 x 3 x j

x 11 x 1j

1 2 3 j

The weights x1, x2, · · · are points of a unit rate PPP. Similarly,
independent unit rate PPP at each descendent node.

This notion of convergence is called local weak convergence.



Thus far ...

◮ BP for optimisation.
Want ground states or minimum energy configurations.
Relaxation is to study configuration distribution at positive
temperature.

◮ Assignment problem, BP iterates, and the cavity equations.

◮ Cavity equations at zero temperature.

◮ There are issues related to correctness. Our hope is in an ensemble
view point.

◮ Loops disappear from a local perspective in the O(1) scale. A locally
tree-like structure emerges.

◮ Local weak limit is a Poisson Weighted Infinite Tree (PWIT).



Look for symmetries

root

x 1 x 2 x 3 x j

1 2 3 j

PWIT T

T
1 T

2 T
3 T

j

◮ Each of the subtrees T1,T2, . . . are identically distributed, with
distribution identical to that of T .

◮ The distributions of T1,T2, . . . are independent.



Solve the problem on the PWIT by exploiting symmetry

◮ The cavity equations on the PWIT are:

φroot = min
j

(xj − φj ) .

root

x 1 x 2 x 3 x j

1 2 3 j

PWIT T

T
1 T

2 T
3 T

j

◮ Symmetry: φj are iid, and equal in distribution to φroot .

◮ A recursive distributional equation (RDE).



Recursive distributional equation (RDE)

◮ Let φ1, φ2, . . . be iid ∼ F .

◮ Let x1, x2, . . . be points of a unit rate PPP.

◮ The distribution of φroot = minj{xj − φj} is also F .

◮ RDE : φ
D
= minj{xj − φj}.

Theorem
The unique solution to the above RDE is the logistic distribution
F (t) = 1/(1 + e−t).



Solving the RDE φ
D
= minj (xj − φj)

◮ Let F be the cdf of φ. Then 1− F (t) = Pr{minj(xj − φj) > t}

◮ (xj , φj) are points in R+ × R of a Poisson process P with intensity
dx × dF (ϕ).

◮ φroot > t ⇐⇒ no point in the set A := {(x , ϕ) : x − ϕ ≤ t}.

1− F (t) = Pr{no points in A} = exp

{

−

∫ ∞

0

∫

x−ϕ≤t

dxdF (ϕ)

}

= exp

{

−

∫ ∞

0

dx (1− F (x − t))

}

= exp

{

−

∫ ∞

−t

dx (1− F (x))

}

◮ Differentiate to get F ′(t) = (1− F (−t))(1 − F (t)).

◮ By symmetry of F ′(t) = F (t)(1 − F (t)). Solution:

F (t) = 1/(1 + e−t), logistic distribution



Recursive tree process

u

v

w

O
v -->u

O
w -->v

O
u -->v

root

x 1 x 2 x 3 x j

x 11 x 1j

1 2 3 j

◮ With an explicit solution to the RDE, we can construct a tree
process of the φ’s on the PWIT

◮ The following holds on every directed edge:

φv→u = min{xv,w − φw→v , w 6= v ,w ∼ v}



Finding a matching on the recursive tree process

u

v

w

O
v -->u

O
w -->v

O
u -->v

◮ Match v to u if

xu,v − φu→v = min{xw,v − φu→v , w ∼ v}

◮ This is equivalent to matching v to the u that satisfies

φu→v + φv→u > xuv

There is a unique such u.

◮ A pleasing symmetry: If u selects v , then v selects u.



This is indeed a consistent matching

u

v

w

O
v -->u

O
w -->v

O
u -->v

To see one way:

xu,v − φu→v = min{xw,v − φw→v , w ∼ v}

< min{xw,v − φw→v , w ∼ v ,w 6= u}

= φv→u .

To see the other way, if z ∼ v and z 6= u, then

xz,v − φz→v > min{xw,v − φw→v , w ∼ v}

= min{xw,v − φw→v , w ∼ v ,w 6= z}

= φv→z .



Two-crucial properties

u

v

w

O
v -->u

O
w -->v

O
u -->v

root

x 1 x 2 x 3 x j

1 2 3 j

PWIT T

T
1 T

2 T
3 T

j

◮ φu→v and φv→u are independent.

◮ Conditioned on the event that there is an edge of length x at u, say
{u, vx}, the quantities φu→vx and φvx→u are independent with the
logistic distribution.



The ζ(2) result

◮ Consider a matching M on Kn,n. New interpretation of total cost.

cost(M) =
∑

e∈M

Ce =
1

n

∑

e∈M

C̃e

=
1

2n

2n
∑

j=1

C̃j,M(j) = E[C̃root,M(root)]

◮ Next compute this expected cost on the optimal matching on the
PWIT tree process.

E[Xroot,M∗(root)] =

∫ ∞

0

x Pr{φ1 + φ2 > x}dx

=
1

2
E[(φ1 + φ2)

2
1{φ1 + φ2 > 0}]

=
1

4
E[(φ1 + φ2)

2] =
1

2
E[φ2

1] =
π2

6
= ζ(2).



Involution invariance

root

x 1 x 2 x 3 x j

1 2 3 j

PWIT T

T
1 T

2 T
3 T

j

◮ Any ordinary matching on T won’t do.

◮ Greedy has an expected cost of 1 < π2/6, but is not allowed.

◮ We must search among matchings M∗ that are limits of M∗
n .

◮ The statistics must be identical when we move to the neighbour on
the best matching, because it is so in the finite graph.

◮ “Involution invariance”.



The BP iteration on the tree (and on Kn,n)

u

v

w

O
v -->u

O
w -->v

O
u -->v

◮ Belief propagation algorithm.

Initialization : φ0
u→v ∼ i.i.d. Logistic

Update rule : φ(k+1)
u→v = min

w 6=u

(

Xv,w − φ(k)
w→v

)

Decision rule : M (k)(v) = argmin
(

Xv,w − φ(k)
u→v

)

“Matching” M (k) = ∪v{(v ,M
(k)(v))}.



Correlation decay

Boundary effects

B

◮ The effect of happenings far away should be negligible: need
correlation decay

◮ Example: As distance between root i and the boundary ∂B → ∞,

lim
dist(i ,∂B)→∞

E

[

max
x∂B ,x

′
∂B

|p(aij = 1|x∂B)− p(aij = 1|x ′∂B)|

]

→ 0



Convergence of BP iterates on the PWIT

Theorem

◮ On the PWIT, φroot is a measurable function of the x’s on the tree.
(The RDE is endogenous.)

◮ Convergence of the BP iterates on the PWIT:

Mk
T (root) → M∗

T (root).



Proof via a version of “bivariate uniqueness”

◮ Let Xi be points of a PPP.

◮ For iid φi distributed F , let TF be the distribution of mini{Xi −φi}.

◮ T is a mapping from the space of distributions on R to itself. The
logistic distribution is a fixed point for the T map.

◮ Similarly T (2) map

F (2) ∈ P(R2) 7→ T (2)F (2) = distribution

(

mini{Xi − φ
(1)
i }

mini{Xi − φ
(2)
i }

)

,

where (φ
(1)
i , φ

(2)
i )i≥1 are iid F (2).

◮ limk(T
(2))k(Logistic × Logistic) has Pr{φ(1) = φ(2)} = 1.



The route to proving correctness

n → ∞

k → ∞

M
(k)
Kn,n

99K99K 99K 99K99K M∗
Kn,n

↓ ↓
↓ ↓
↓ ↓
↓ ↓
↓ ↓

M
(k)
T 99K99K99K99K99K M∗

T



Local weak limit of graphs with messages

Theorem
1. Convergence of the kth iterate:

φ
(k)
u→v (Kn,n) → φ

(k)
u→v (T ) as n → ∞ in probability

Pr
{

(u,M∗
Kn,n

(u)) 6= (u,M∗
T (u))

}

→ 0 as n → ∞.

2. The approximate matching can be turned into a perfect matching with
negligible additional cost.



Matching, Edge cover, TSP, etc.

Let x1, x2, . . . be points of a unit rate Poisson point process.

◮ Matching: φ is a random variable taking values on R with

φ
d
= min

j
(xj − φj) .

◮ Edge cover: φ is a random variable taking values on R+ with:

φ
d
= min

j
(xj − φj)+ .

◮ TSP: φ is a random variable taking values on R with

φ
d
= secondmin

j
(xj − φj ) .

◮ Many-to-one matching, load balancing, etc.



Summary
◮ BP for optimisation via positive temperature relaxation (graphical

model with objective as energy and an inverse temperature
parameter).

◮ Cavity equations at positive temperature, and at zero temperature.

◮ An ensemble perspective and passage to a local weak limit.

◮ Locally tree-like structure of the limiting object.

◮ A recursive distributional equation (RDE) and its solution exploiting
the symmetries of the limit object.

◮ Existence of a recursive tree process.

◮ Endogeny to ensure correlation decay.

◮ Convergence of BP iterates on the tree. Pull back to Kn,n.
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