
Information-theoretic perspective on massive
multiple-access

Yury Polyanskiy

Department of EECS
MIT

yp@mit.edu

North Americal School of Info Th., Jun. 2018

Legal notice: Some images in this presentation are borrowed from publicly
available sources. The copyright on these images belongs to their original
creators. For full copyright information please contact the author.

Yury Polyanskiy MAC tutorial 1

How does your cell phone work?

9
SMS

3 -+

x

cingular
9:41 AM

iPod

Web

Mail

Phone

Settings

Notes

Calculator

Clock

YouTube
Stocks

Maps
Weather

Camera

Photos

Calendar

Text

9
SMS

-+

x

cingular
9:41 AM

iPod

Web

M

Phone

Settings

Notes

Calculator

Clock

YouTube
Stocks

Maps
Weat

Camera

Photos

Calendar

Text

• Cell phone is powered on.
• Announces its presence on PRACH.
• Base station (periodically) gives permission to send.
• Summary:

I Random-Access is very low duty cycle.
I BS makes access ORTHOGONAL across users
I bulk of communication is over an interference-free single-user AWGN.

• What’s new in 5G?
Yury Polyanskiy MAC tutorial 2

Internet-of-Things

• Smart Agriculture
• Advanced Metering systems
• Fire alarms
• Home security and automation
• Oilfield and pipeline monitoring

• M-health
• Smart parking, intelligent traffic
• Waste and recycling
• Asset tracking and geo-location
• Animal tracking and livestock

Expected density: 100-500 devices per household/office

Yury Polyanskiy MAC tutorial 3

Soup of solutions

years

Long
Battery

Life

years

Long
Battery

Life

km/miles

Long
Range

$
Low
Cost

High
Capacity

km/miles

Long
Range

$
Low
Cost

High
Capacity

LTELTE 868/915
ISM

868/915
ISM

DECTDECT

GPRSGPRS

NFCNFC

UWBUWB

ZigbeeZigbee

ZwaveZwave

HSDPAHSDPA

Wi-GigWi-Gig SigfoxSigfox

ThreadThread BluetoothBluetooth

HSPAHSPA
LoRaLoRa

Wi-MaxWi-Max

Wi-FiWi-Fi

Bluetooth
LE

Bluetooth
LE

3

NWaveNWave

Yury Polyanskiy MAC tutorial 4

Two breeds of IoT
LPWAN

One basestation covers 10 km

Yury Polyanskiy MAC tutorial 5

IoT is about battery life

Q: What drains the battery? Examples (@ 3.3V):

Arduino (w/o reg.) XBee (Zigbee) LP-WAN sensor

Sleep 5 uA 1 uA 1-2 uA
CPU Running 50 uA 40 uA 60 uA

Radio Xmit 40 mA 20 mA

• Duty-cycle of 1 sec / 20 min radio lasts 6-10 yr / AA bat.
• Caveat: Calculation assumes single-user
• Key problem: Energy usage will grow with # of sensors deployed.
How much?

• Sad: depends on technology? Happy: IT comes to rescue!

Yury Polyanskiy MAC tutorial 6

IoT is about battery life

Q: What drains the battery? Examples (@ 3.3V):

Arduino (w/o reg.) XBee (Zigbee) LP-WAN sensor

Sleep 5 uA 1 uA 1-2 uA
CPU Running 50 uA 40 uA 60 uA
Radio Xmit 40 mA 20 mA

• Duty-cycle of 1 sec / 20 min radio lasts 6-10 yr / AA bat.
• Caveat: Calculation assumes single-user
• Key problem: Energy usage will grow with # of sensors deployed.
How much?

• Sad: depends on technology? Happy: IT comes to rescue!

Yury Polyanskiy MAC tutorial 6

IoT is about battery life

Q: What drains the battery? Examples (@ 3.3V):

Arduino (w/o reg.) XBee (Zigbee) LP-WAN sensor

Sleep 5 uA 1 uA 1-2 uA
CPU Running 50 uA 40 uA 60 uA
Radio Xmit 40 mA 20 mA

• Duty-cycle of 1 sec / 20 min radio lasts 6-10 yr / AA bat.
• Caveat: Calculation assumes single-user
• Key problem: Energy usage will grow with # of sensors deployed.
How much?

• Sad: depends on technology? Happy: IT comes to rescue!

Yury Polyanskiy MAC tutorial 6

Outline

Envisioned solution:
• To save battery: sensors sleep all the time, except transmissions.
• ... uncoordinated transmissions.
• ... they wake up, blast the packet, go back to sleep.
• Focus on low-energy (low Eb/N0)
• Focus on fundamental limits
• ... but with low-complexity solutions (single-user-only decoding).

Issues we need to understand:
1 packets are short: finite-blocklength (FBL) info theory
2 multiple-access channel: Classical MAC
3 low-complexity MAC: modulation, CDMA, multi-user detection
4 massive random-access: many users, same-codebook codes (NEW)

Supporting 10 users at 1Mbps is much easier than 1M users at 10bps.

Yury Polyanskiy MAC tutorial 7

Outline

Envisioned solution:
• To save battery: sensors sleep all the time, except transmissions.
• ... uncoordinated transmissions.
• ... they wake up, blast the packet, go back to sleep.
• Focus on low-energy (low Eb/N0)
• Focus on fundamental limits
• ... but with low-complexity solutions (single-user-only decoding).

Issues we need to understand:
1 packets are short: finite-blocklength (FBL) info theory
2 multiple-access channel: Classical MAC
3 low-complexity MAC: modulation, CDMA, multi-user detection
4 massive random-access: many users, same-codebook codes (NEW)

Supporting 10 users at 1Mbps is much easier than 1M users at 10bps.

Yury Polyanskiy MAC tutorial 7

Outline

Envisioned solution:
• To save battery: sensors sleep all the time, except transmissions.
• ... uncoordinated transmissions.
• ... they wake up, blast the packet, go back to sleep.
• Focus on low-energy (low Eb/N0)
• Focus on fundamental limits
• ... but with low-complexity solutions (single-user-only decoding).

Issues we need to understand:
1 packets are short: finite-blocklength (FBL) info theory
2 multiple-access channel: Classical MAC
3 low-complexity MAC: modulation, CDMA, multi-user detection
4 massive random-access: many users, same-codebook codes (NEW)

Supporting 10 users at 1Mbps is much easier than 1M users at 10bps.

Yury Polyanskiy MAC tutorial 7

FBL Info Theory: short intro

Yury Polyanskiy MAC tutorial 8

Case study: 1000-bit BSC

• Consider channel BSC(n = 1000, δ = 0.11)

• How many data bits can we transmit with (block) Pe ≤ 10−3?
• Attempt 1: Repetition

k = 47 bits via [21,1,21]-code

• Attempt 2: Reed-Muller

k = 112 bits via [64,7,32]-code

• Shannon’s prediction: C = 0.5 bit so

k ≈ 500 bit

• Finite blocklength IT:
414 ≤ k ≤ 416

Yury Polyanskiy MAC tutorial 9

Case study: 1000-bit BSC

• Consider channel BSC(n = 1000, δ = 0.11)

• How many data bits can we transmit with (block) Pe ≤ 10−3?
• Attempt 1: Repetition

k = 47 bits via [21,1,21]-code

• Attempt 2: Reed-Muller

k = 112 bits via [64,7,32]-code

• Shannon’s prediction: C = 0.5 bit so

k ≈ 500 bit

• Finite blocklength IT:
414 ≤ k ≤ 416

Yury Polyanskiy MAC tutorial 9

Abstract communication problem

Noisy channel

Goal: Decrease corruption of data caused by noise

Yury Polyanskiy MAC tutorial 10

Channel coding: principles

Noisy channel

Data bits Redundancy

Goal: Decrease corruption of data caused by noise

Solution: Code to diminish probability of error Pe.

Key metrics: Rate and Pe

Yury Polyanskiy MAC tutorial 11

Channel coding: principles

Possible

Impossible

Data bits Redundancy

Pe Reliability−Rate tradeoff

Rate

Noisy channel

Yury Polyanskiy MAC tutorial 12

Channel coding: principles

Data bits Redundancy

Pe Reliability−Rate tradeoff

Rate

Noisy channel
Decreasing Pe further:

1. More redundancy
Bad: loses rate

2. Increase blocklength!

n = 10

Yury Polyanskiy MAC tutorial 13

Channel coding: principles

Data bits Redundancy

Pe Reliability−Rate tradeoff

Rate

Noisy channel
Decreasing Pe further:

1. More redundancy
Bad: loses rate

2. Increase blocklength!

n = 100

Yury Polyanskiy MAC tutorial 14

Channel coding: principles

Noisy channel

Data bits Redundancy

Pe Reliability−Rate tradeoff

Rate

Decreasing Pe further:

1. More redundancy
Bad: loses rate

2. Increase blocklength!

n = 1000

Yury Polyanskiy MAC tutorial 15

Channel coding: principles

Noisy channel

Data bits Redundancy

Pe Reliability−Rate tradeoff

Rate

Decreasing Pe further:

1. More redundancy
Bad: loses rate

2. Increase blocklength!

n = 106

Yury Polyanskiy MAC tutorial 16

Channel coding: Shannon capacity

Noisy channel

Data bits Redundancy

Pe Reliability−Rate tradeoff

C

Channel capacity

Rate

Shannon: Fix R < C
Pe ↘ 0 as n→∞

Yury Polyanskiy MAC tutorial 17

Channel coding: Shannon capacity

Noisy channel

Data bits Redundancy

Pe Reliability−Rate tradeoff

C Rate

Channel capacity

Shannon: Fix R < C
Pe ↘ 0 as n→∞

Question:
For what n will Pe < 10−3?

Yury Polyanskiy MAC tutorial 18

Channel coding: Gaussian approximation

Noisy channel

Data bits Redundancy

Pe Reliability−Rate tradeoff

C Rate

Channel capacity

Channel dispersion

Shannon: Fix R < C
Pe ↘ 0 as n→∞

Question:
For what n will Pe < 10−3?

Answer:

n & const · V
C2

Yury Polyanskiy MAC tutorial 19

Channel coding: Gaussian approximation

Noisy channel

Data bits Redundancy

Pe Reliability−Rate tradeoff

C Rate

Channel capacity

Channel dispersion

Shannon: Fix R < C
Pe ↘ 0 as n→∞

Question:
For what n will Pe < 10−3?

Answer:

n & const · V
C2

Yury Polyanskiy MAC tutorial 19

How to describe evolution of the boundary?

Pe Reliability−Rate tradeoff

C Rate

Classical results:
• Vertical asymptotics: fixed rate, reliability function
Elias, Dobrushin, Fano, Shannon-Gallager-Berlekamp

• Horizontal asymptotics: fixed ε, strong converse,
√
n terms

Wolfowitz, Weiss, Dobrushin, Strassen, Kemperman

Yury Polyanskiy MAC tutorial 20

How to describe evolution of the boundary?

Pe Reliability−Rate tradeoff

C Rate

XXI century:
• Tight non-asymptotic bounds
• Remarkable precision of normal approximation
• Extended results on horizontal asymptotics
AWGN, O(log n), cost constraints, feedback, etc.

Yury Polyanskiy MAC tutorial 20

Finite blocklength fundamental limit

Pe Reliability−Rate tradeoff

C Rate

Definition

R∗(n, ε) = max

{
1

n
logM : ∃(n,M, ε)-code

}

(max. achievable rate for blocklength n and prob. of error ε)

Rough summary: For ergodic channels

R∗(n, ε) ≈ C −
√
V

n
Q−1(ε) .

Yury Polyanskiy MAC tutorial 21

Connection to CLT

• Let PY n|Xn = PnY |X be memoryless.

• Converse bounds (roughly):

R∗(n, ε) . ε-th quantile of
1

n
log

dPY n|Xn

dQY n

• Achievability bounds (roughly):

R∗(n, ε) & ε-th quantile of
1

n
log

dPY n|Xn

dQY n

• Info-density i(Xn;Y n) = log
dPY n|Xn

dQY n
is a sum of iid.

• Choice of QY n is an art. Often c.a.o.d. works. Then,
E[i(Xn;Y n] = nC.

• So by CLT
R∗(n, ε) ≈ ε-quantile of N (C, V/n)

Yury Polyanskiy MAC tutorial 22

Connection to CLT

• Let PY n|Xn = PnY |X be memoryless.

• Converse bounds (roughly):

R∗(n, ε) . ε-th quantile of
1

n
log

dPY n|Xn

dQY n

• Achievability bounds (roughly):

R∗(n, ε) & ε-th quantile of
1

n
log

dPY n|Xn

dQY n

• Info-density i(Xn;Y n) = log
dPY n|Xn

dQY n
is a sum of iid.

• Choice of QY n is an art. Often c.a.o.d. works. Then,
E[i(Xn;Y n] = nC.

• So by CLT
R∗(n, ε) ≈ ε-quantile of N (C, V/n)

Yury Polyanskiy MAC tutorial 22

FBL achievability bounds

• A random transformation A
PY |X−→ B

• (M, ε) codes:

W → A→ B→ Ŵ W ∼ Unif{1, . . . ,M}
P[W 6= Ŵ] ≤ ε

• For every PXY = PXPY |X define information density:

ı(x; y) , log
dPY |X=x

dPY
(y)

I E[ı(X;Y)] = I(X;Y)
I Var[ı(X;Y)|X] = V
I Memoryless channels: ı(An;Bn) = sum of iid.

ı(An;Bn)
d≈ nI(A;B) +

√
nV Z, Z ∼ N (0, 1)

• Goal: Prove FBL bounds.
As by-product: R∗(n, ε) & C −

√
V
nQ
−1(ε)

Yury Polyanskiy MAC tutorial 23

DT bound

Theorem (Dependence Testing Bound)

For any PX there exists a code with M codewords and

ε ≤ E
[
exp

{
−
∣∣∣ıX;Y (X;Y)− log

M−1

2

∣∣∣
+
}]

.

Highlights:
• Strictly stronger than Feinstein-Shannon
• . . . and no optimization over γ!
• Easier to compute than RCU

• Easier asymptotics: ε ≤ E
[
e−n|

1
n
ı(Xn;Y n)−R|+

]

≈ Q
(√

n
V {I(X;Y)−R}

)

• Has a form of f -divergence: 1− ε ≥ Df (PXY ‖PXPY)

Yury Polyanskiy MAC tutorial 24

DT bound: Proof

• Codebook: random C1, . . . CM ∼ PX iid
• Feinstein decoder:

Ŵ = smallest j s.t. ıX;Y (Cj ;Y) > γ

• j-th codeword’s probability of error:

P[error |W = j] ≤ P[ıX;Y (X;Y) ≤ γ]︸ ︷︷ ︸
©a

+(j − 1)P[ıX;Y (X̄;Y) > γ]︸ ︷︷ ︸
©b

In ©a : Cj too far from Y
In ©b : Ck with k < j is too close to Y

• Average over W :

P[error] ≤ P [ıX;Y (X;Y) ≤ γ] +
M−1

2
P
[
ıX;Y (X̄;Y) > γ

]

Yury Polyanskiy MAC tutorial 25

DT bound: Proof

• Recap: for every γ there exists a code with

ε ≤ P [ıX;Y (X;Y) ≤ γ] +
M−1

2
P
[
ıX;Y (X̄;Y) > γ

]
.

• Key step: closed-form optimization of γ.
• Introduce X̄ ⊥⊥ Y : ıX;Y = log dPXY

dPX̄Y

• We have

PXY

[
dPXY
dPX̄Y

≤ eγ
]

+
M−1

2
PX̄Y

[
dPXY
dPX̄Y

> eγ
]

Bayesian dependence testing!
Optimum threshold: Ratio of priors ⇒ γ∗ = log M−1

2

• Change of measure argument:

P

[
dP

dQ
≤ τ

]
+ τQ

[
dP

dQ
> τ

]
= EP

[
exp

{
−
∣∣∣∣log

dP

dQ
− log τ

∣∣∣∣
+
}]

.

Yury Polyanskiy MAC tutorial 26

FBL Converse bounds

• Take a random transformation A
PY |X−→ B

(think A = An, B = Bn, PY |X = PY n|Xn)
• Input distribution PX induces PY = PY |X ◦ PX

PXY = PXPY |X

• Fix code:
W

encoder−→ X → Y
decoder−→ Ŵ

W ∼ Unif [M] and M = # of codewords
Input distribution PX associated to a code:

PX [·] , # of codewords ∈ (·)
M

.

• Goal: Upper bounds on logM in terms of ε , P[error]

As by-product: R∗(n, ε) . C −
√

V
nQ
−1(ε)

Yury Polyanskiy MAC tutorial 27

Fano’s inequality

Theorem (Fano)

For any code
encoder decoder

PSfrag replacements

W

W1
W2

Ŵ

Ŵ1

Ŵ2

Y

Y1
Y2

X

X1
X2

PY |X

A
A1
B
B1
C
C1

with W ∼ Unif{1, . . . ,M}:

logM ≤ supPX I(X;Y) + h(ε)

1− ε , ε = P[W 6= Ŵ]

Implies weak converse:

R∗(n, ε) ≤ C

1− ε + o(1) .

Proof: ε-small =⇒ H(W |Ŵ)-small =⇒ I(X;Y) ≈ H(W)= logM

Yury Polyanskiy MAC tutorial 28

A (very long) proof of Fano via channel substitution

Consider two distributions on (W,X, Y, Ŵ):

P : PWXY Ŵ = PW × PX|W × PY |X ×PŴ |Y
DAG: W → X → Y → Ŵ

Q : QWXY Ŵ = PW × PX|W × QY ×PŴ |Y
DAG: W → X Y → Ŵ

Under Q the channel is useless:

Q[W = Ŵ] =

M∑

m=1

PW (m)QŴ (m) =
1

M

M∑

m=1

QŴ (m) =
1

M

Next step: data-processing for relative entropy D(·||·)

Yury Polyanskiy MAC tutorial 29

Data-processing for D(·||·)

Transformation
PB|A

PA

Input distribution Output distribution

QA

PB

QB

(Random)

D(PA‖QA) ≥ D(PB‖QB)

Apply to transform: (W,X, Y, Ŵ) 7→ 1{W 6= Ŵ}:

D(PWXY Ŵ ‖QWXY Ŵ) ≥ d(P[W = Ŵ] ‖Q[W = Ŵ])

= d(1− ε|| 1
M)

where d(x||y) = x log x
y + (1− x) log 1−x

1−y .

Yury Polyanskiy MAC tutorial 30

Data-processing for D(·||·)

Transformation
PB|A

PA

Input distribution Output distribution

QA

PB

QB

(Random)

D(PA‖QA) ≥ D(PB‖QB)

Apply to transform: (W,X, Y, Ŵ) 7→ 1{W 6= Ŵ}:

D(PWXY Ŵ ‖QWXY Ŵ) ≥ d(P[W = Ŵ] ‖Q[W = Ŵ])

= d(1− ε|| 1
M)

where d(x||y) = x log x
y + (1− x) log 1−x

1−y .

Yury Polyanskiy MAC tutorial 30

A proof of Fano via channel substitution

So far:
D(PWXY Ŵ ‖QWXY Ŵ) ≥ d(1− ε|| 1

M)

Lower-bound RHS:

d(1− ε‖ 1
M) ≥ (1− ε) logM − h(ε)

Analyze LHS:

D(PWXY Ŵ ‖QWXY Ŵ) = D(PXY ‖QXY)

= D(PXPY |X‖PXQY)

= D(PY |X‖QY |PX)

(Recall: D(PY |X‖QY |PX) = Ex∼PX
[D(PY |X=x‖QY)])

Yury Polyanskiy MAC tutorial 31

A proof of Fano via channel substitution: last step

Putting it all together:

(1− ε) logM ≤ D(PY |X ||QY |PX) + h(ε) ∀QY ∀code

Two methods:
1 Compute supPX infQY and recall

inf
QY

D(PY |X‖QY |PX) = I(X;Y)

2 Take QY = P ∗Y = the caod (capacity achieving output dist.) and
recall

D(PY |X‖P ∗Y |PX) ≤ sup
X
I(X;Y) ∀PX

Conclude:
(1− ε) logM ≤ sup

PX

I(X;Y) + h(ε)

Important: Second method is particularly useful for FBL!
Yury Polyanskiy MAC tutorial 32

Tightening: from D(·||·) to βα(·, ·)
Question: How about replacing D(·||·) with other divergences?

D(·||·) relative entropy
(KL divergence) weak converse

Dλ(·||·) Rényi divergence strong converse

βα(·, ·) Neyman-Pearson
ROC curve FBL bounds

Note: Using βα is aka meta-converse.

... and leads to R∗(n, ε) ≤ C −
√

V
nQ
−1(ε)

Yury Polyanskiy MAC tutorial 33

Tightening: from D(·||·) to βα(·, ·)
Question: How about replacing D(·||·) with other divergences?

D(·||·) relative entropy
(KL divergence) weak converse

Dλ(·||·) Rényi divergence strong converse

βα(·, ·) Neyman-Pearson
ROC curve FBL bounds

Note: Using βα is aka meta-converse.

... and leads to R∗(n, ε) ≤ C −
√

V
nQ
−1(ε)

Yury Polyanskiy MAC tutorial 33

Tightening: from D(·||·) to βα(·, ·)
Question: How about replacing D(·||·) with other divergences?

D(·||·) relative entropy
(KL divergence) weak converse

Dλ(·||·) Rényi divergence strong converse

βα(·, ·) Neyman-Pearson
ROC curve FBL bounds

Note: Using βα is aka meta-converse.

... and leads to R∗(n, ε) ≤ C −
√

V
nQ
−1(ε)

Yury Polyanskiy MAC tutorial 33

General meta-converse principle

Steps:
• Select auxiliary channel QY |X (art)

E.g.: QY |X=x = center of a cluster of x
• Prove converse bound for channel QY |X

E.g.: Q[W = Ŵ] . # of clusters
M

• Compute distance D(P‖Q) between two spaces

P : PWXY Ŵ = PW × PX|W × PY |X × PŴ |Y

vs.

Q : PWXY Ŵ = PW × PX|W × QY |X × PŴ |Y

• Apply data processing: D(PW,Ŵ ‖QW,Ŵ) ≤ D(PX,Y ‖QX,Y)

• Key observation: This inequality connects P[error], Q[error] and
distance D(P‖|Q).

Yury Polyanskiy MAC tutorial 34

FBL: summary

• All in all, these methods allow us to conclude:

R∗(n, ε) ≈ C −
√
V

n
Q−1(ε)

for a wide range of channels.
• Typically, V = Var[i(X;Y)|X] for cap.ach. distribution X.

• Example: The AWGN Channel

Z∼ N (0, σ2)
↓

X −→ ⊕ −→ Y

Codewords xn ∈ Rn satisfy power-constraint:
∑n

j=1 |xj |2 ≤ nP

C(P) =
1

2
log(1 + P), V (P) =

log2 e

2

(
1− 1

(1 + P)2

)

• Curious property of Gaussian noise: V (P) ≤ log2 e
2

Below for Gaussian MAC we focus on m.i./capacity. By FBL
there ∃ codes within O(1√

n
) uniformly in P .

Yury Polyanskiy MAC tutorial 35

FBL: summary

• All in all, these methods allow us to conclude:

R∗(n, ε) ≈ C −
√
V

n
Q−1(ε)

for a wide range of channels.
• Typically, V = Var[i(X;Y)|X] for cap.ach. distribution X.
• Example: The AWGN Channel

Z∼ N (0, σ2)
↓

X −→ ⊕ −→ Y

Codewords xn ∈ Rn satisfy power-constraint:
∑n

j=1 |xj |2 ≤ nP

C(P) =
1

2
log(1 + P), V (P) =

log2 e

2

(
1− 1

(1 + P)2

)

• Curious property of Gaussian noise: V (P) ≤ log2 e
2

Below for Gaussian MAC we focus on m.i./capacity. By FBL
there ∃ codes within O(1√

n
) uniformly in P .

Yury Polyanskiy MAC tutorial 35

FBL: summary

• All in all, these methods allow us to conclude:

R∗(n, ε) ≈ C −
√
V

n
Q−1(ε)

for a wide range of channels.
• Typically, V = Var[i(X;Y)|X] for cap.ach. distribution X.
• Example: The AWGN Channel

Z∼ N (0, σ2)
↓

X −→ ⊕ −→ Y

Codewords xn ∈ Rn satisfy power-constraint:
∑n

j=1 |xj |2 ≤ nP

C(P) =
1

2
log(1 + P), V (P) =

log2 e

2

(
1− 1

(1 + P)2

)

• Curious property of Gaussian noise: V (P) ≤ log2 e
2

Below for Gaussian MAC we focus on m.i./capacity. By FBL
there ∃ codes within O(1√

n
) uniformly in P .

Yury Polyanskiy MAC tutorial 35

Classical multiple-access IT

Yury Polyanskiy MAC tutorial 36

IT vs networks view on MAC

• Core problem: many users, one channel

• Networking folks:

• ALOHA protocol (slotted) achieves:
∑

i

Ri ≈ 0.37C

• Open problem: what max fraction η∗ achievable?
State of the art [Tsybakov-Lihanov’87]: 0.476 ≤ η∗ ≤ 0.568
(collision resolution codes)

• IT: We want
∑

iRi � C !
• How? By exploiting physics of collision.

Yury Polyanskiy MAC tutorial 37

IT vs networks view on MAC

• Core problem: many users, one channel
• Networking folks:

• ALOHA protocol (slotted) achieves:
∑

i

Ri ≈ 0.37C

• Open problem: what max fraction η∗ achievable?
State of the art [Tsybakov-Lihanov’87]: 0.476 ≤ η∗ ≤ 0.568
(collision resolution codes)

• IT: We want
∑

iRi � C !
• How? By exploiting physics of collision.

Yury Polyanskiy MAC tutorial 37

IT vs networks view on MAC

• Core problem: many users, one channel
• Networking folks:

• ALOHA protocol (slotted) achieves:
∑

i

Ri ≈ 0.37C

• Open problem: what max fraction η∗ achievable?
State of the art [Tsybakov-Lihanov’87]: 0.476 ≤ η∗ ≤ 0.568
(collision resolution codes)

• IT: We want
∑

iRi � C !
• How? By exploiting physics of collision.

Yury Polyanskiy MAC tutorial 37

2-user MAC: IT formalism

PSfrag replacements

W

W1

W2

Ŵ

Ŵ1

Ŵ2

Y

Y1
Y2
X

X1

X2

PY |X
A
A1
B
B1
C
C1

• 2-input channel: PY |X1,X2
(memoryless)

• Random messages W1 ∈ [2nR1],W2 ∈ [2nR2]
• Encoders: Xn

1 = f1(W1), Xn
2 = f2(W2)

• Joint decoder: (Ŵ1, Ŵ2) = g(Y)
• Joint probability of error:

P[W1 = Ŵ1,W2 = Ŵ2] ≥ 1− ε .

• FBL fundamental limit (region):

R∗(n, ε) = {(R1, R2) : ∃(2nR1 , 2nR2 , ε)-code}
• Asymptotics: [·] = closure

Cε =
[
lim inf
n→∞

R∗(n, ε)
]
, C =

⋂

ε>0

Cε

Yury Polyanskiy MAC tutorial 38

2-user MAC: IT formalism

PSfrag replacements

W

W1

W2

Ŵ

Ŵ1

Ŵ2

Y

Y1
Y2
X

X1

X2

PY |X
A
A1
B
B1
C
C1

• 2-input channel: PY |X1,X2
(memoryless)

• Random messages W1 ∈ [2nR1],W2 ∈ [2nR2]
• Encoders: Xn

1 = f1(W1), Xn
2 = f2(W2)

• Joint decoder: (Ŵ1, Ŵ2) = g(Y)
• Joint probability of error:

P[W1 = Ŵ1,W2 = Ŵ2] ≥ 1− ε .
• FBL fundamental limit (region):

R∗(n, ε) = {(R1, R2) : ∃(2nR1 , 2nR2 , ε)-code}
• Asymptotics: [·] = closure

Cε =
[
lim inf
n→∞

R∗(n, ε)
]
, C =

⋂

ε>0

Cε

Yury Polyanskiy MAC tutorial 38

2-user MAC: capacity region

Theorem (Ahlswede-Liao (capacity) + Dueck (Strong converse))

C = Cε =


co





⋃

PX1
,PX2

Penta(PX1 , PX2)








Penta(PX1 , PX2) ,



(R1, R2) :

R1 +R2 ≤ I(X1, X2;Y)
R1 ≤ I(X1;Y |X2)
R2 ≤ I(X2;Y |X1)





• co{·} – convex hull
• Fun fact: w/o syncronization C = [

⋃
Penta] but w/o co{·} !

• Not true with cost constraints. In that case need time-sharing:

C =
⋃

X1,X2,U



(R1, R2) :

R1 +R2 ≤ I(X1, X2;Y |U)
R1 ≤ I(X1;Y |X2, U)
R2 ≤ I(X2;Y |X1, U)



 .

Yury Polyanskiy MAC tutorial 39

2-user MAC: capacity region

Theorem (Ahlswede-Liao (capacity) + Dueck (Strong converse))

C = Cε =


co





⋃

PX1
,PX2

Penta(PX1 , PX2)








Penta(PX1 , PX2) ,



(R1, R2) :

R1 +R2 ≤ I(X1, X2;Y)
R1 ≤ I(X1;Y |X2)
R2 ≤ I(X2;Y |X1)





• co{·} – convex hull
• Fun fact: w/o syncronization C = [

⋃
Penta] but w/o co{·} !

• Not true with cost constraints. In that case need time-sharing:

C =
⋃

X1,X2,U



(R1, R2) :

R1 +R2 ≤ I(X1, X2;Y |U)
R1 ≤ I(X1;Y |X2, U)
R2 ≤ I(X2;Y |X1, U)



 .

Yury Polyanskiy MAC tutorial 39

Capacity = Union of pentagons

Penta(PX1 , PX2) ,



(R1, R2) :

R1 +R2 ≤ I(X1, X2;Y)
R1 ≤ I(X1;Y |X2)
R2 ≤ I(X2;Y |X1)





R1

R2

I(X1;Y |X2)

I(X2;Y |X1)
I(X1, X2;Y)

Note: After taking
⋃
PX1

,PX2
and convex-hull, resulting region may be

curvilinear!

Yury Polyanskiy MAC tutorial 40

MAC theorem: standard proof (outline)

Theorem

C = Cε =


co





⋃

PX1
,PX2

Penta(PX1 , PX2)








Here is a standard proof
• Weak-converse:

I sum-rate

R1 +R2 .
1

n
I(Xn

1 , X
n
2 ;Y n) ≤ 1

n

n∑

i=1

I(X1i, X2i;Yi) .

I genie gives Xn
1 to decoder

R2 .
1

n
I(Xn

2 ;Y n|Xn
1) ≤ 1

n

n∑

i=1

I(X2i;Yi|X1i)

I Hence (R1, R2) ∈ 1
n

∑
i Penta(PX1i

, PX2i
)

Yury Polyanskiy MAC tutorial 41

MAC theorem: standard proof (outline)

Theorem

C = Cε =


co





⋃

PX1
,PX2

Penta(PX1 , PX2)








Here is a standard proof
• Achievability:

I Fix PX1
, PX2

.
I Generate codewords for user i from (PX1)⊗n iid
I Decode via joint-typicality
I Have (M1 − 1)(M2 − 1) possibilities with both Ŵ1, Ŵ2 wrong

(each w.p. ≤ 2−nI(X1,X2;Y))
I Have Mi− 1 possibilities with Ŵi wrong (each w.p. ≤ 2−nI(Xi;Y |Xĩ))
I Hence, if (R1, R2) ∈ Penta(PX1 , PX2) all three types of errors are

small.
I Let us understand this more carefully...

Yury Polyanskiy MAC tutorial 41

MAC achievability: details I

• Gen. M1 = 2nR1 codewords Ci
iid∼ (PX1)⊗n

• Gen. M2 = 2nR2 codewords Di
iid∼ (PX2)⊗n

• True message W1 = i0,W2 = j0.
• Decoder sees yn. How to decode?

• Why is this not the same as decoding single-user M1×M2-size code?

• Extra structure: (Ci0 , Dj) 6⊥⊥ (Ci0 , Dj0)

Yury Polyanskiy MAC tutorial 42

MAC achievability: details I

• Gen. M1 = 2nR1 codewords Ci
iid∼ (PX1)⊗n

• Gen. M2 = 2nR2 codewords Di
iid∼ (PX2)⊗n

• True message W1 = i0,W2 = j0.
• Decoder sees yn. How to decode?
• Why is this not the same as decoding single-user M1×M2-size code?

• Extra structure: (Ci0 , Dj) 6⊥⊥ (Ci0 , Dj0)

Yury Polyanskiy MAC tutorial 42

MAC achievability: details I

• Gen. M1 = 2nR1 codewords Ci
iid∼ (PX1)⊗n

• Gen. M2 = 2nR2 codewords Di
iid∼ (PX2)⊗n

• True message W1 = i0,W2 = j0.
• Decoder sees yn. How to decode?
• Why is this not the same as decoding single-user M1×M2-size code?

• Extra structure: (Ci0 , Dj) 6⊥⊥ (Ci0 , Dj0)

Yury Polyanskiy MAC tutorial 42

MAC achievability: details II

• Decoder sees yn. How to decode?
• A good test for rejecting (M1 − 1)(M2 − 1) codewords in (P12):

(T12) i(ci, dj ; y
n) ≤ γ12 ⇒ remove (i, j) from consideration

• i(c, d; yn) , log
PY n|Xn1 ,X

n
2

(yn|c,d)

PY n (yn)

• Standard bound: ∀i 6= i0, j 6= j0:

P[i(Ci, Dj ;Y
n) > γ12] ≤ e−γ12

• Set γ12 = log(M1M2) + τ then test (T12) filters all (i, j) ∈ (P12)

Yury Polyanskiy MAC tutorial 43

MAC achievability: details III

• Decoder sees yn. How to decode?
• A good test for rejecting (M2 − 1) codewords in (P2):

(T2) i(dj ; y
n|ci) ≤ γ2 ⇒ remove (i, j) from consideration

• i(d; yn|c) , log
PY n|Xn1 ,X

n
2

(yn|c,d)

PY n|Xn1
(yn|c)

• Standard bound: ∀j 6= j0:

P[i(Dj ;Y
n|Ci0) > γ2] ≤ e−γ2

• Set γ2 = log(M2) + τ then test (T2) filters all (i0, j) ∈ (P2)

Yury Polyanskiy MAC tutorial 44

• Decoder sees yn. How to decode?
(T12) i(ci, dj ; y

n) ≤ n(R1 +R2) + τ ⇒ remove (i, j)

(T1) i(ci; y
n|dj) ≤ nR1 + τ ⇒ remove (i, j)

(T2) i(dj ; y
n|ci) ≤ nR2 + τ ⇒ remove (i, j)

• This achieves:

ε ≤ 3e−τ + P
[
{i(Xn

1 , X
n
2 ;Y n) ≤ n(R1 +R2) + τ} ∪

{i(Xn
1 ;Y n|Xn

2) ≤ nR1 + τ} ∪ {i(Xn
2 ;Y n|Xn

1) ≤ nR2 + τ}
]
.

• By CLT a (R1, R2) within 1√
n
of the boundary of Penta is

achievable.

• Typical decoding
I Use (T12) rule – this is like decoding single-user M1 ×M2-code

(LDPC+LDGM structure!)
I After applying it, most often get only one (true) message left (!)
I Unless R1 = I(X1;Y |X2) +O(1√

n
).

I In this case, many (i, j)’s remain. But they are all in one column!
I Hence decode W2. Conditioned on X2 – decode M1-code.

Yury Polyanskiy MAC tutorial 45

• Decoder sees yn. How to decode?
(T12) i(ci, dj ; y

n) ≤ n(R1 +R2) + τ ⇒ remove (i, j)

(T1) i(ci; y
n|dj) ≤ nR1 + τ ⇒ remove (i, j)

(T2) i(dj ; y
n|ci) ≤ nR2 + τ ⇒ remove (i, j)

• This achieves:

ε ≤ 3e−τ + P
[
{i(Xn

1 , X
n
2 ;Y n) ≤ n(R1 +R2) + τ} ∪

{i(Xn
1 ;Y n|Xn

2) ≤ nR1 + τ} ∪ {i(Xn
2 ;Y n|Xn

1) ≤ nR2 + τ}
]
.

• By CLT a (R1, R2) within 1√
n
of the boundary of Penta is

achievable.
• Typical decoding

I Use (T12) rule – this is like decoding single-user M1 ×M2-code
(LDPC+LDGM structure!)

I After applying it, most often get only one (true) message left (!)

I Unless R1 = I(X1;Y |X2) +O(1√
n

).
I In this case, many (i, j)’s remain. But they are all in one column!
I Hence decode W2. Conditioned on X2 – decode M1-code.

Yury Polyanskiy MAC tutorial 45

• Decoder sees yn. How to decode?
(T12) i(ci, dj ; y

n) ≤ n(R1 +R2) + τ ⇒ remove (i, j)

(T1) i(ci; y
n|dj) ≤ nR1 + τ ⇒ remove (i, j)

(T2) i(dj ; y
n|ci) ≤ nR2 + τ ⇒ remove (i, j)

• This achieves:

ε ≤ 3e−τ + P
[
{i(Xn

1 , X
n
2 ;Y n) ≤ n(R1 +R2) + τ} ∪

{i(Xn
1 ;Y n|Xn

2) ≤ nR1 + τ} ∪ {i(Xn
2 ;Y n|Xn

1) ≤ nR2 + τ}
]
.

• By CLT a (R1, R2) within 1√
n
of the boundary of Penta is

achievable.
• Typical decoding

I Use (T12) rule – this is like decoding single-user M1 ×M2-code
(LDPC+LDGM structure!)

I After applying it, most often get only one (true) message left (!)
I Unless R1 = I(X1;Y |X2) +O(1√

n
).

I In this case, many (i, j)’s remain. But they are all in one column!
I Hence decode W2. Conditioned on X2 – decode M1-code.

Yury Polyanskiy MAC tutorial 45

Example: Binary Adder Channel (BAC)

A

B
R1

R2

1

1

Y
R1 +R2 ≤ 3/2

Y = X1 +X2 Xi ∈ {0, 1}, Y ∈ {0, 1, 2}

• Maximal sum-rate:

Csum = max
A,B

I(A,B;Y) = maxH(A+B) =
3

2
log 2

• Each user can send 1 bit/ch.use. But together 3
2 bit/ch.use. How?

Yury Polyanskiy MAC tutorial 46

Example: Binary Adder Channel (BAC)

A

B
R1

R2

1

1

Y
R1 +R2 ≤ 3/2

• Take R1 = 1. Then X2 → Y sees channel:

0

1

0

1

2

1
2

1
2

1
2

1
2

= BEC(1/2)

• successive interference cancellation (SIC):

An

Bn

Y n Dec
BEC(1/2)

Ân

B̂n

Yury Polyanskiy MAC tutorial 47

Example: Binary Adder Channel (BAC)

A

B
R1

R2

1

1

Y
R1 +R2 ≤ 3/2

• Take R1 = 1. Then X2 → Y sees channel:

0

1

0

1

2

1
2

1
2

1
2

1
2

= BEC(1/2)

• successive interference cancellation (SIC):

An

Bn

Y n Dec
BEC(1/2)

Ân

B̂n

Yury Polyanskiy MAC tutorial 47

Example: Binary Adder Channel (BAC)

A

B
R1

R2

1

1

Y
R1 +R2 ≤ 3/2

• Take R1 = 1. Then X2 → Y sees channel:

0

1

0

1

2

1
2

1
2

1
2

1
2

= BEC(1/2)

• successive interference cancellation (SIC):

An

Bn

Y n Dec
BEC(1/2)

Ân

B̂n

Yury Polyanskiy MAC tutorial 47

Example: Binary Adder Channel (BAC)

A

B
R1

R2

1

1

Y
R1 +R2 ≤ 3/2

Y = X1 +X2 Xi ∈ {0, 1}, Y ∈ {0, 1, 2}
• Analyzing FBL achievability we can show: (maximal sumrate)

R∗sum(n, ε) ≥ 3

2
−
√

1

4n
Q−1(ε) +O(log n) .

• Open problem: Prove R∗sum(n, ε) ≤ 3
2 +

√
1
nKε

• Conjecture: [Ajjanagadde-P.’15] for all 0 < α < 1

max
An⊥⊥Bn

Hα(An +Bn) = nHα(1
4 ,

1
2 ,

1
4)

where Hα(·) is Renyi entropy.
• If true implies Open problem. How?

Yury Polyanskiy MAC tutorial 48

Example: Binary Adder Channel (BAC)

A

B
R1

R2

1

1

Y
R1 +R2 ≤ 3/2

Y = X1 +X2 Xi ∈ {0, 1}, Y ∈ {0, 1, 2}• Analyzing FBL achievability we can show: (maximal sumrate)

R∗sum(n, ε) ≥ 3

2
−
√

1

4n
Q−1(ε) +O(log n) .

• Open problem: Prove R∗sum(n, ε) ≤ 3
2 +

√
1
nKε

• ... not even asking for Kε < 0

• ... So far best-known result (Ahslwede): R∗sum ≤ 3
2 + c

√
1
n log n

• The state is so bad that even for ε = 0 we only know (Fano):

R∗sum(n, ε = 0) ≤ 3
2

• Open problem: Prove limn→∞R
∗
sum(n, ε = 0) < 3

2 .
• Conjecture: [Ajjanagadde-P.’15] for all 0 < α < 1

max
An⊥⊥Bn

Hα(An +Bn) = nHα(1
4 ,

1
2 ,

1
4)

where Hα(·) is Renyi entropy.
• If true implies Open problem. How?

Yury Polyanskiy MAC tutorial 48

Example: Binary Adder Channel (BAC)

A

B
R1

R2

1

1

Y
R1 +R2 ≤ 3/2

Y = X1 +X2 Xi ∈ {0, 1}, Y ∈ {0, 1, 2}• Analyzing FBL achievability we can show: (maximal sumrate)

R∗sum(n, ε) ≥ 3

2
−
√

1

4n
Q−1(ε) +O(log n) .

• Open problem: Prove R∗sum(n, ε) ≤ 3
2 +

√
1
nKε

• ... not even asking for Kε < 0

• ... So far best-known result (Ahslwede): R∗sum ≤ 3
2 + c

√
1
n log n

• The state is so bad that even for ε = 0 we only know (Fano):

R∗sum(n, ε = 0) ≤ 3
2

• Open problem: Prove limn→∞R
∗
sum(n, ε = 0) < 3

2 .

• Conjecture: [Ajjanagadde-P.’15] for all 0 < α < 1

max
An⊥⊥Bn

Hα(An +Bn) = nHα(1
4 ,

1
2 ,

1
4)

where Hα(·) is Renyi entropy.
• If true implies Open problem. How?

Yury Polyanskiy MAC tutorial 48

Example: Binary Adder Channel (BAC)

A

B
R1

R2

1

1

Y
R1 +R2 ≤ 3/2

Y = X1 +X2 Xi ∈ {0, 1}, Y ∈ {0, 1, 2}
• Analyzing FBL achievability we can show: (maximal sumrate)

R∗sum(n, ε) ≥ 3

2
−
√

1

4n
Q−1(ε) +O(log n) .

• Open problem: Prove R∗sum(n, ε) ≤ 3
2 +

√
1
nKε

• Conjecture: [Ajjanagadde-P.’15] for all 0 < α < 1

max
An⊥⊥Bn

Hα(An +Bn) = nHα(1
4 ,

1
2 ,

1
4)

where Hα(·) is Renyi entropy.
• If true implies Open problem. How?

Yury Polyanskiy MAC tutorial 48

MAC: revisit weak-converse (genie)

P :

PSfrag replacements

W

W1

W2

Ŵ

Ŵ1

Ŵ2

Y

Y1
Y2
X

X1

X2

PY |X
A
A1
B
B1
C
C1

Q :

PSfrag replacements

W

W1

W2

Ŵ

Ŵ1

Ŵ2

Y

Y1
Y2
X

X1

X2

PY |X
A
A1
B
B1
C
C1

P[Ŵ1,2 = W1,2] = 1− ε Q[Ŵ1,2 = W1,2] = 1
M1

. . . apply data processing of D(·||·) . . .
⇓

d(1− ε‖ 1
M1

) ≤ D(PY |X1X2
‖QY |X1

|PX1PX2)

Optimizing QY |X1
:

logM1 ≤
I(X1;Y |X2) + h(ε)

1− ε

Yury Polyanskiy MAC tutorial 49

MAC: revisit weak-converse (genie)

P :

PSfrag replacements

W

W1

W2

Ŵ

Ŵ1

Ŵ2

Y

Y1
Y2
X

X1

X2

PY |X
A
A1
B
B1
C
C1

Q :

PSfrag replacements

W

W1

W2

Ŵ

Ŵ1

Ŵ2

Y

Y1
Y2
X

X1

X2

PY |X
A
A1
B
B1
C
C1

P[Ŵ1,2 = W1,2] = 1− ε Q[Ŵ1,2 = W1,2] = 1
M1M2

. . . apply data processing of D(·||·) . . .
⇓

d(1− ε‖ 1
M1

) ≤ D(PY |X1X2
‖QY |PX1PX2)

Optimizing QY :

logM1M2 ≤
I(X1, X2;Y) + h(ε)

1− ε
Together with previous: full (pentagon) weak converse

Yury Polyanskiy MAC tutorial 50

MAC: towards strong-converse

P :

PSfrag replacements

W

W1

W2

Ŵ

Ŵ1

Ŵ2

Y

Y1
Y2
X

X1

X2

PY |X
A
A1
B
B1
C
C1

Q :

PSfrag replacements

W

W1

W2

Ŵ

Ŵ1

Ŵ2

Y

Y1
Y2
X

X1

X2

PY |X
A
A1
B
B1
C
C1

P[Ŵ1,2 = W1,2] = 1− ε Q[Ŵ1,2 = W1,2] = 1
M1M2

. . . use Renyi Dλ(·‖·) . . .
⇓

Dλ(PX1X2Y ‖PX1PX2QY) ≥ dλ(1− ε‖ 1
M1M2

)

Selecting λ = 1 + 1√
n
yields (for BAC)

logM1,M2 ≤ sup
An⊥⊥Bn

Hαn(An +Bn) +K
√
n

with αn = 1− 1√
n
.

Yury Polyanskiy MAC tutorial 51

Classical MAC: summary

• Trivially generalizes to K-user MAC:

Penta = {(R1, . . . , RK) :
∑

i∈S
Ri ≤ I(XS ;Y |XSc)∀S ⊂ [K]}

• Classic IT: Fix K let n→∞.
• Use joint probability of error:

P[W1 = Ŵ1, . . . ,WK = Ŵk] ≥ 1− ε .

• New FBL issue: for K = 100 need 2100 tests in achievability.

• What is new today?
I Many-user scaling [D. Guo et al]: K = µn, n→∞
I New probability of error [P.’17]: 1

K

∑
i P[Wi 6= Ŵi] ≤ ε

I Same-codebook coding [P.’17]: Xi ∈ C for all i.

Yury Polyanskiy MAC tutorial 52

Classical MAC: summary

• Trivially generalizes to K-user MAC:

Penta = {(R1, . . . , RK) :
∑

i∈S
Ri ≤ I(XS ;Y |XSc)∀S ⊂ [K]}

• Classic IT: Fix K let n→∞.
• Use joint probability of error:

P[W1 = Ŵ1, . . . ,WK = Ŵk] ≥ 1− ε .

• New FBL issue: for K = 100 need 2100 tests in achievability.
• What is new today?

I Many-user scaling [D. Guo et al]: K = µn, n→∞
I New probability of error [P.’17]: 1

K

∑
i P[Wi 6= Ŵi] ≤ ε

I Same-codebook coding [P.’17]: Xi ∈ C for all i.

Yury Polyanskiy MAC tutorial 52

Gaussian MAC. Modulation

Let’s put on our engineering shoes.

Yury Polyanskiy MAC tutorial 53

The classical model: K-user multiple-access channel

User 1
Tx

User 2
Tx

User K
Tx

Rx

X
1

Xk

Y (t) = X1(t) + · · ·+XK(t) + Z(t)

+
+

. . .

+

=

User 1

User K

Noise

Received

 output

• Users send coded waveforms Xj(t) Tech note: synchronized block coding

• Additive Gaussian noise Z(t)

• Base station’s job: estimate Xj from the knowledge of Y (t)

Yury Polyanskiy MAC tutorial 54

The classical model: K-user multiple-access channel

User 1
Tx

User 2
Tx

User K
Tx

Rx

X
1

Xk

Y (t) = X1(t) + · · ·+XK(t) + Z(t)

+
+

. . .

+

=

User 1

User K

Noise

Received

 output

• Users send coded waveforms Xj(t) Tech note: synchronized block coding

• Additive Gaussian noise Z(t)

• Base station’s job: estimate Xj from the knowledge of Y (t)

Yury Polyanskiy MAC tutorial 54

How to avoid inter-user interference?

These are called orthogonal schemes
Key problem: resources divided among active and inactive (!) users

(or need costly resource ack/grant protocol)

in IoT most are inactive ⇒ huge waste of bandwidth

Yury Polyanskiy MAC tutorial 55

How to avoid inter-user interference?

These are called orthogonal schemes
Key problem: resources divided among active and inactive (!) users

(or need costly resource ack/grant protocol)

in IoT most are inactive ⇒ huge waste of bandwidth

Yury Polyanskiy MAC tutorial 55

Orthogonal and non-orthogonal multiple access (NOMA)

This “pie-slicing” philosophy comes from:
• Given: W Hz bandwidth and duration T sec:
• By XYZ Theorem: d.o.f. n = 2WT

XYZ ∈ { Kotelnikov, Nyquist, Shannon, Slepian, . . . }
• TDMA, FDMA, CDMA: just different bases in R2WT .

(Fine print: CDMA = Orthogonal CDMA here).

• Is there value in having K > n? (non-orthogonal signalling)
• Is it even possible to have K > n or even K � n?
• Silly: Take n = 1 and let user j send a bit via {0, 2j}.
• ... cheating: user K’s power is 22K larger than user 1’s.
• Challenge: users only allowed to send ±1, can we have K � n?

Yury Polyanskiy MAC tutorial 56

Orthogonal and non-orthogonal multiple access (NOMA)

This “pie-slicing” philosophy comes from:
• Given: W Hz bandwidth and duration T sec:
• By XYZ Theorem: d.o.f. n = 2WT

XYZ ∈ { Kotelnikov, Nyquist, Shannon, Slepian, . . . }
• TDMA, FDMA, CDMA: just different bases in R2WT .

(Fine print: CDMA = Orthogonal CDMA here).

• Is there value in having K > n? (non-orthogonal signalling)
• Is it even possible to have K > n or even K � n?

• Silly: Take n = 1 and let user j send a bit via {0, 2j}.
• ... cheating: user K’s power is 22K larger than user 1’s.
• Challenge: users only allowed to send ±1, can we have K � n?

Yury Polyanskiy MAC tutorial 56

Orthogonal and non-orthogonal multiple access (NOMA)

This “pie-slicing” philosophy comes from:
• Given: W Hz bandwidth and duration T sec:
• By XYZ Theorem: d.o.f. n = 2WT

XYZ ∈ { Kotelnikov, Nyquist, Shannon, Slepian, . . . }
• TDMA, FDMA, CDMA: just different bases in R2WT .

(Fine print: CDMA = Orthogonal CDMA here).

• Is there value in having K > n? (non-orthogonal signalling)
• Is it even possible to have K > n or even K � n?
• Silly: Take n = 1 and let user j send a bit via {0, 2j}.

• ... cheating: user K’s power is 22K larger than user 1’s.
• Challenge: users only allowed to send ±1, can we have K � n?

Yury Polyanskiy MAC tutorial 56

Orthogonal and non-orthogonal multiple access (NOMA)

This “pie-slicing” philosophy comes from:
• Given: W Hz bandwidth and duration T sec:
• By XYZ Theorem: d.o.f. n = 2WT

XYZ ∈ { Kotelnikov, Nyquist, Shannon, Slepian, . . . }
• TDMA, FDMA, CDMA: just different bases in R2WT .

(Fine print: CDMA = Orthogonal CDMA here).

• Is there value in having K > n? (non-orthogonal signalling)
• Is it even possible to have K > n or even K � n?
• Silly: Take n = 1 and let user j send a bit via {0, 2j}.
• ... cheating: user K’s power is 22K larger than user 1’s.

• Challenge: users only allowed to send ±1, can we have K � n?

Yury Polyanskiy MAC tutorial 56

Orthogonal and non-orthogonal multiple access (NOMA)

This “pie-slicing” philosophy comes from:
• Given: W Hz bandwidth and duration T sec:
• By XYZ Theorem: d.o.f. n = 2WT

XYZ ∈ { Kotelnikov, Nyquist, Shannon, Slepian, . . . }
• TDMA, FDMA, CDMA: just different bases in R2WT .

(Fine print: CDMA = Orthogonal CDMA here).

• Is there value in having K > n? (non-orthogonal signalling)
• Is it even possible to have K > n or even K � n?
• Silly: Take n = 1 and let user j send a bit via {0, 2j}.
• ... cheating: user K’s power is 22K larger than user 1’s.
• Challenge: users only allowed to send ±1, can we have K � n?

Yury Polyanskiy MAC tutorial 56

Achieving capacity of K-user BAC with zero-error

Y =

K∑

j=1

Xj Xi ∈ {±1}

• Known: Csum(K) = H(Bin(K, 1/2)) ≈ 1
2 logK.

• IOW, for sending 1-bit (each) the frame-length n ≈ 2K
log2 K

� K.

How can K > n users signal in n dimensions simultaneously?

• Khachatrian-Martirossian: even with zero-error!
First, recall a particularly nice orthogonal basis:

(each user is modulating his row)
• K.-M. noticed you can add more rows!

Yury Polyanskiy MAC tutorial 57

Achieving capacity of K-user BAC with zero-error

Y =

K∑

j=1

Xj Xi ∈ {±1}

• Known: Csum(K) = H(Bin(K, 1/2)) ≈ 1
2 logK.

• IOW, for sending 1-bit (each) the frame-length n ≈ 2K
log2 K

� K.

How can K > n users signal in n dimensions simultaneously?
• Khachatrian-Martirossian: even with zero-error!
First, recall a particularly nice orthogonal basis:

(each user is modulating his row)
• K.-M. noticed you can add more rows!

Yury Polyanskiy MAC tutorial 57

Khachatrian-Martirossian construction

How can K > n users signal in n dimensions simultaneously?

• Walsh-Hadamard basis:

• K.-M. signals:

• Key property: x 7→ xAm is injective on {±1}Km , Km = m
2 2m + 1

• Number of users at dimension n: K ≈ 1
2n log2 n (optimal!)

Yury Polyanskiy MAC tutorial 58

Khachatrian-Martirossian construction

How can K > n users signal in n dimensions simultaneously?

• Walsh-Hadamard basis:

• K.-M. signals:
~

• Key property: x 7→ xAm is injective on {±1}Km , Km = m
2 2m + 1

• Number of users at dimension n: K ≈ 1
2n log2 n (optimal!)

Yury Polyanskiy MAC tutorial 58

Khachatrian-Martirossian construction

How can K > n users signal in n dimensions simultaneously?

• Walsh-Hadamard basis:

• K.-M. signals:

• Key property: x 7→ xAm is injective on {±1}Km , Km = m
2 2m + 1

• Number of users at dimension n: K ≈ 1
2n log2 n (optimal!)

Yury Polyanskiy MAC tutorial 58

~

• Want to show: v is decodable from vÃm for any v ∈ {±1}⊗Km and
v2Km−1+1 = 0.

• Equivalently: v ∈ {0, 1}⊗Km (just use v 7→ 1+v
2)

• Let v = [x y z] and

[x y z]Ãm = [g h]⇒ g − h = [x y z]




0
2Am−1

2I2m−1




• z1 = 0, so by adding (g − h)1 to (g − h)` we get:

(*) 2z` = (g − h)1 + (g − h)` − 2y · v` ` = 2, . . . , 2m−1

where v` is sum of 1-st and `-th column of Am−1

• Key: v`’s entries are {0, 2}. Take mod 4 of (∗) and decode z`’s !
• Subtracting z`’s we get system:

[x y]

(
Am−1 Am−1

Am−1 −Am−1

)
= [g′ h′] ⇒ xAm−1 =

g′ + h′

2
⇒ induct

Yury Polyanskiy MAC tutorial 59

~

• Want to show: v is decodable from vÃm for any v ∈ {±1}⊗Km and
v2Km−1+1 = 0.

• Equivalently: v ∈ {0, 1}⊗Km (just use v 7→ 1+v
2)

• Let v = [x y z] and

[x y z]Ãm = [g h]

⇒ g − h = [x y z]




0
2Am−1

2I2m−1




• z1 = 0, so by adding (g − h)1 to (g − h)` we get:

(*) 2z` = (g − h)1 + (g − h)` − 2y · v` ` = 2, . . . , 2m−1

where v` is sum of 1-st and `-th column of Am−1

• Key: v`’s entries are {0, 2}. Take mod 4 of (∗) and decode z`’s !
• Subtracting z`’s we get system:

[x y]

(
Am−1 Am−1

Am−1 −Am−1

)
= [g′ h′] ⇒ xAm−1 =

g′ + h′

2
⇒ induct

Yury Polyanskiy MAC tutorial 59

~

• Want to show: v is decodable from vÃm for any v ∈ {±1}⊗Km and
v2Km−1+1 = 0.

• Equivalently: v ∈ {0, 1}⊗Km (just use v 7→ 1+v
2)

• Let v = [x y z] and

[x y z]Ãm = [g h]⇒ g − h = [x y z]




0
2Am−1

2I2m−1




• z1 = 0, so by adding (g − h)1 to (g − h)` we get:

(*) 2z` = (g − h)1 + (g − h)` − 2y · v` ` = 2, . . . , 2m−1

where v` is sum of 1-st and `-th column of Am−1

• Key: v`’s entries are {0, 2}. Take mod 4 of (∗) and decode z`’s !
• Subtracting z`’s we get system:

[x y]

(
Am−1 Am−1

Am−1 −Am−1

)
= [g′ h′] ⇒ xAm−1 =

g′ + h′

2
⇒ induct

Yury Polyanskiy MAC tutorial 59

~

• Want to show: v is decodable from vÃm for any v ∈ {±1}⊗Km and
v2Km−1+1 = 0.

• Equivalently: v ∈ {0, 1}⊗Km (just use v 7→ 1+v
2)

• Let v = [x y z] and

[x y z]Ãm = [g h]⇒ g − h = [x y z]




0
2Am−1

2I2m−1




• z1 = 0, so by adding (g − h)1 to (g − h)` we get:

(*) 2z` = (g − h)1 + (g − h)` − 2y · v` ` = 2, . . . , 2m−1

where v` is sum of 1-st and `-th column of Am−1

• Key: v`’s entries are {0, 2}. Take mod 4 of (∗) and decode z`’s !
• Subtracting z`’s we get system:

[x y]

(
Am−1 Am−1

Am−1 −Am−1

)
= [g′ h′] ⇒ xAm−1 =

g′ + h′

2
⇒ induct

Yury Polyanskiy MAC tutorial 59

~

• Want to show: v is decodable from vÃm for any v ∈ {±1}⊗Km and
v2Km−1+1 = 0.

• Equivalently: v ∈ {0, 1}⊗Km (just use v 7→ 1+v
2)

• Let v = [x y z] and

[x y z]Ãm = [g h]⇒ g − h = [x y z]




0
2Am−1

2I2m−1




• z1 = 0, so by adding (g − h)1 to (g − h)` we get:

(*) 2z` = (g − h)1 + (g − h)` − 2y · v` ` = 2, . . . , 2m−1

where v` is sum of 1-st and `-th column of Am−1

• Key: v`’s entries are {0, 2}. Take mod 4 of (∗) and decode z`’s !
• Subtracting z`’s we get system:

[x y]

(
Am−1 Am−1

Am−1 −Am−1

)
= [g′ h′]

⇒ xAm−1 =
g′ + h′

2
⇒ induct

Yury Polyanskiy MAC tutorial 59

~

• Want to show: v is decodable from vÃm for any v ∈ {±1}⊗Km and
v2Km−1+1 = 0.

• Equivalently: v ∈ {0, 1}⊗Km (just use v 7→ 1+v
2)

• Let v = [x y z] and

[x y z]Ãm = [g h]⇒ g − h = [x y z]




0
2Am−1

2I2m−1




• z1 = 0, so by adding (g − h)1 to (g − h)` we get:

(*) 2z` = (g − h)1 + (g − h)` − 2y · v` ` = 2, . . . , 2m−1

where v` is sum of 1-st and `-th column of Am−1

• Key: v`’s entries are {0, 2}. Take mod 4 of (∗) and decode z`’s !
• Subtracting z`’s we get system:

[x y]

(
Am−1 Am−1

Am−1 −Am−1

)
= [g′ h′] ⇒ xAm−1 =

g′ + h′

2

⇒ induct

Yury Polyanskiy MAC tutorial 59

~

• Want to show: v is decodable from vÃm for any v ∈ {±1}⊗Km and
v2Km−1+1 = 0.

• Equivalently: v ∈ {0, 1}⊗Km (just use v 7→ 1+v
2)

• Let v = [x y z] and

[x y z]Ãm = [g h]⇒ g − h = [x y z]




0
2Am−1

2I2m−1




• z1 = 0, so by adding (g − h)1 to (g − h)` we get:

(*) 2z` = (g − h)1 + (g − h)` − 2y · v` ` = 2, . . . , 2m−1

where v` is sum of 1-st and `-th column of Am−1

• Key: v`’s entries are {0, 2}. Take mod 4 of (∗) and decode z`’s !
• Subtracting z`’s we get system:

[x y]

(
Am−1 Am−1

Am−1 −Am−1

)
= [g′ h′] ⇒ xAm−1 =

g′ + h′

2
⇒ induct

Yury Polyanskiy MAC tutorial 59

Reflections

• When user inputs are constrained (to ±1), can have K � n

• Total information grows with K: H(X1 + · · ·+XK) ∼ 1
2 logK.

(This is similar to 1
2 log(1 +KP) in GMAC.)

• Lots of smart ideas in MAC codes.

• Information theory structures it all into:

C =
⋃

X1,...,XK ,U

{(R1, . . . , RK) : RS ≤ I(XS ;Y |XSc , U)}

• Similar to how all the smarts (Reed-Muller, BCH, LDPC, Polar, ...)
are hidden behind

C = max
X

I(X;Y)

Yury Polyanskiy MAC tutorial 60

Reflections

• When user inputs are constrained (to ±1), can have K � n

• Total information grows with K: H(X1 + · · ·+XK) ∼ 1
2 logK.

(This is similar to 1
2 log(1 +KP) in GMAC.)

• Lots of smart ideas in MAC codes.
• Information theory structures it all into:

C =
⋃

X1,...,XK ,U

{(R1, . . . , RK) : RS ≤ I(XS ;Y |XSc , U)}

• Similar to how all the smarts (Reed-Muller, BCH, LDPC, Polar, ...)
are hidden behind

C = max
X

I(X;Y)

Yury Polyanskiy MAC tutorial 60

Reflections

• When user inputs are constrained (to ±1), can have K � n

• Total information grows with K: H(X1 + · · ·+XK) ∼ 1
2 logK.

(This is similar to 1
2 log(1 +KP) in GMAC.)

• Lots of smart ideas in MAC codes.
• Information theory structures it all into:

C =
⋃

X1,...,XK ,U

{(R1, . . . , RK) : RS ≤ I(XS ;Y |XSc , U)}

• Similar to how all the smarts (Reed-Muller, BCH, LDPC, Polar, ...)
are hidden behind

C = max
X

I(X;Y)

Yury Polyanskiy MAC tutorial 60

2-user Gaussian MAC

Y = X1 +X2 + Z

Z
iid∼ N (0, 1)

E[(X1)2] ≤ P1,E[(X2)2] ≤ P2

X1

X2

Y

Z

• Evaluating capacity region:

R1 +R2 ≤ I(X1, X2;Y) ≤ 1

2
log(1 + P1 + P2)

Ri ≤ I(Xi;Y |Xî) = I(Xi;Xi + Z) ≤ 1

2
log(1 + Pi)

R1

R2
1
2
log(1 + P1 + P2)

1
2
log(1 + P2)

1
2
log(1 + P1)

Yury Polyanskiy MAC tutorial 61

2-user Gaussian MAC

Y = X1 +X2 + Z

Z
iid∼ N (0, 1)

E[(X1)2] ≤ P1,E[(X2)2] ≤ P2

X1

X2

Y

Z

• Evaluating capacity region:

R1 +R2 ≤ I(X1, X2;Y) ≤ 1

2
log(1 + P1 + P2)

Ri ≤ I(Xi;Y |Xî) = I(Xi;Xi + Z) ≤ 1

2
log(1 + Pi)

R1

R2
1
2
log(1 + P1 + P2)

1
2
log(1 + P2)

1
2
log(1 + P1)

Yury Polyanskiy MAC tutorial 61

2-user Gaussian MAC

Y = X1 +X2 + Z

Z
iid∼ N (0, 1)

E[(X1)2] ≤ P1,E[(X2)2] ≤ P2

X1

X2

Y

Z

• Evaluating capacity region:

R1 +R2 ≤ I(X1, X2;Y) ≤ 1

2
log(1 + P1 + P2)

Ri ≤ I(Xi;Y |Xî) = I(Xi;Xi + Z) ≤ 1

2
log(1 + Pi)

R1

R2
1
2
log(1 + P1 + P2)

1
2
log(1 + P2)

1
2
log(1 + P1)

Yury Polyanskiy MAC tutorial 61

2-GMAC rates for TDMA
Y = X1 +X2 + Z

Z
iid∼ N (0, 1)

E[(X1)2] ≤ P1,E[(X2)2] ≤ P2

R1

R2
1
2
log(1 + P1 + P2)

1
2
log(1 + P2)

1
2
log(1 + P1)

• Here is a TDMA:
I Partition block: n = λn+ (1− λ)n

I User 1 sends in λn: R1 = λ
2 log(1 + P1)

I User 2 sends in λ̄n: R2 = λ̄
2 log(1 + P2)

R1

R2
1
2
log(1 + P1 + P2)

• Note: low-complexity decoder – two users are decoded separately.

Yury Polyanskiy MAC tutorial 62

2-GMAC rates for TDMA
Y = X1 +X2 + Z

Z
iid∼ N (0, 1)

E[(X1)2] ≤ P1,E[(X2)2] ≤ P2

R1

R2
1
2
log(1 + P1 + P2)

1
2
log(1 + P2)

1
2
log(1 + P1)

• Here is a TDMA:
I Partition block: n = λn+ (1− λ)n

I User 1 sends in λn: R1 = λ
2 log(1 + P1)

I User 2 sends in λ̄n: R2 = λ̄
2 log(1 + P2)

R1

R2
1
2
log(1 + P1 + P2)

• Note: low-complexity decoder – two users are decoded separately.

Yury Polyanskiy MAC tutorial 62

2-GMAC rates for TDMA
Y = X1 +X2 + Z

Z
iid∼ N (0, 1)

E[(X1)2] ≤ P1,E[(X2)2] ≤ P2

R1

R2
1
2
log(1 + P1 + P2)

1
2
log(1 + P2)

1
2
log(1 + P1)

• Here is a TDMA:
I Partition block: n = λn+ (1− λ)n

I User 1 sends in λn: R1 = λ
2 log(1 + P1)

I User 2 sends in λ̄n: R2 = λ̄
2 log(1 + P2)

R1

R2
1
2
log(1 + P1 + P2)

• Note: low-complexity decoder – two users are decoded separately.

Yury Polyanskiy MAC tutorial 62

2-GMAC rates for FDMA
Y = X1 +X2 + Z

Z
iid∼ N (0, 1)

E[(X1)2] ≤ P1,E[(X2)2] ≤ P2

R1

R2
1
2
log(1 + P1 + P2)

1
2
log(1 + P2)

1
2
log(1 + P1)• Here is a FDMA:

I Use Fourier transform to change n=time to n=frequency.
I Partition block: n = λn+ (1− λ)n

I User 1 sends in λn: R1 = λ
2 log(1 + P1

λ)

I User 2 sends in λ̄n: R2 = λ̄
2 log(1 + P2

λ̄
)

R1

R2
1
2
log(1 + P1 + P2)

b

λ∗ = P1
P1+P2

achieves optimal
sumrate

Yury Polyanskiy MAC tutorial 63

2-GMAC rates for FDMA
Y = X1 +X2 + Z

Z
iid∼ N (0, 1)

E[(X1)2] ≤ P1,E[(X2)2] ≤ P2

R1

R2
1
2
log(1 + P1 + P2)

1
2
log(1 + P2)

1
2
log(1 + P1)• Here is a FDMA:

I Use Fourier transform to change n=time to n=frequency.
I Partition block: n = λn+ (1− λ)n

I User 1 sends in λn: R1 = λ
2 log(1 + P1

λ)

I User 2 sends in λ̄n: R2 = λ̄
2 log(1 + P2

λ̄
)

R1

R2
1
2
log(1 + P1 + P2)

b

λ∗ = P1
P1+P2

achieves optimal
sumrate

Yury Polyanskiy MAC tutorial 63

2-GMAC rates for FDMA
Y = X1 +X2 + Z

Z
iid∼ N (0, 1)

E[(X1)2] ≤ P1,E[(X2)2] ≤ P2

R1

R2
1
2
log(1 + P1 + P2)

1
2
log(1 + P2)

1
2
log(1 + P1)• Here is a FDMA:

I Use Fourier transform to change n=time to n=frequency.
I Partition block: n = λn+ (1− λ)n

I User 1 sends in λn: R1 = λ
2 log(1 + P1

λ)

I User 2 sends in λ̄n: R2 = λ̄
2 log(1 + P2

λ̄
)

R1

R2
1
2
log(1 + P1 + P2)

b

λ∗ = P1
P1+P2

achieves optimal
sumrate

Yury Polyanskiy MAC tutorial 63

2-GMAC rates for TIN
Y = X1 +X2 + Z

Z
iid∼ N (0, 1)

E[(X1)2] ≤ P1,E[(X2)2] ≤ P2

R1

R2
1
2
log(1 + P1 + P2)

1
2
log(1 + P2)

1
2
log(1 + P1)• Treat-interference-as-noise (TIN):

I Each user treats the other as noise (single-user decoders)
I Random coding ensures noise is Gaussian.
I Rates: R1 = 1

2 log(1 + P1

1+P2
), R2 = 1

2 log(1 + P2

1+P1
)

R1

R2
1
2
log(1 + P1 + P2)

b1
2
log(1 + P2

1+P1
)

1
2
log(1 + P1

1+P2
)

• TIN point can be inside/outside TDMA.

Yury Polyanskiy MAC tutorial 64

2-GMAC rates for TIN
Y = X1 +X2 + Z

Z
iid∼ N (0, 1)

E[(X1)2] ≤ P1,E[(X2)2] ≤ P2

R1

R2
1
2
log(1 + P1 + P2)

1
2
log(1 + P2)

1
2
log(1 + P1)• Treat-interference-as-noise (TIN):

I Each user treats the other as noise (single-user decoders)
I Random coding ensures noise is Gaussian.
I Rates: R1 = 1

2 log(1 + P1

1+P2
), R2 = 1

2 log(1 + P2

1+P1
)

R1

R2
1
2
log(1 + P1 + P2)

b1
2
log(1 + P2

1+P1
)

1
2
log(1 + P1

1+P2
)

• TIN point can be inside/outside TDMA.

Yury Polyanskiy MAC tutorial 64

TIN + SIC
Y = X1 +X2 + Z

Z
iid∼ N (0, 1)

E[(X1)2] ≤ P1,E[(X2)2] ≤ P2

R1

R2
1
2
log(1 + P1 + P2)

b

b

1
2
log(1 + P2

1+P1
)

1
2
log(1 + P1

1+P2
)• Consider a corner point:

R1 =
1

2
log(1 +

P1

1 + P2
), R2 =

1

2
log(1 + P2) .

• User 1 can be decoded by TIN. But then can subtract it out!

X1

X2

Y

Z

Dec1 X̂1

X̂2Dec2

Enc1

Enc2

• So far: achieved three optimal points via SU-decoding. Any more?

Yury Polyanskiy MAC tutorial 65

TIN + SIC
Y = X1 +X2 + Z

Z
iid∼ N (0, 1)

E[(X1)2] ≤ P1,E[(X2)2] ≤ P2

R1

R2
1
2
log(1 + P1 + P2)

b

b

1
2
log(1 + P2

1+P1
)

1
2
log(1 + P1

1+P2
)• Consider a corner point:

R1 =
1

2
log(1 +

P1

1 + P2
), R2 =

1

2
log(1 + P2) .

• User 1 can be decoded by TIN. But then can subtract it out!

X1

X2

Y

Z

Dec1 X̂1

X̂2Dec2

Enc1

Enc2

• So far: achieved three optimal points via SU-decoding. Any more?

Yury Polyanskiy MAC tutorial 65

TIN + SIC
Y = X1 +X2 + Z

Z
iid∼ N (0, 1)

E[(X1)2] ≤ P1,E[(X2)2] ≤ P2

R1

R2
1
2
log(1 + P1 + P2)

b

b

1
2
log(1 + P2

1+P1
)

1
2
log(1 + P1

1+P2
)• Consider a corner point:

R1 =
1

2
log(1 +

P1

1 + P2
), R2 =

1

2
log(1 + P2) .

• User 1 can be decoded by TIN. But then can subtract it out!

X1

X2

Y

Z

Dec1 X̂1

X̂2Dec2

Enc1

Enc2

• So far: achieved three optimal points via SU-decoding. Any more?

Yury Polyanskiy MAC tutorial 65

TIN + SIC
Y = X1 +X2 + Z

Z
iid∼ N (0, 1)

E[(X1)2] ≤ P1,E[(X2)2] ≤ P2

R1

R2
1
2
log(1 + P1 + P2)

b

b

1
2
log(1 + P2

1+P1
)

1
2
log(1 + P1

1+P2
)• Consider a corner point:

R1 =
1

2
log(1 +

P1

1 + P2
), R2 =

1

2
log(1 + P2) .

• User 1 can be decoded by TIN. But then can subtract it out!

X1

X2

Y

Z

Dec1 X̂1

X̂2Dec2

Enc1

Enc2

• So far: achieved three optimal points via SU-decoding. Any more?

Yury Polyanskiy MAC tutorial 65

Rate-splitting
Y = X1 +X2 + Z

Z
iid∼ N (0, 1)

E[(X1)2] ≤ P1,E[(X2)2] ≤ P2

R1

R2
1
2
log(1 + P1 + P2)

b
b
b

• Split user 1 into two virtual users 1A and 1B:

R1 = R1A +R1B, P1 = P1A + P1B

• A funny order of decoding:
I Decode X1A via TIN: R1A = 1

2 log(1 + P1A

1+P1B+P2
)

I Subtract X1A, decode X2: R2 = 1
2 log(1 + P2

1+P1B
)

I Subtract X2, decode X1B : R1B = 1
2 log(1 + P1B)

• Simple check:

R1A +R1B +R2 =
1

2
log(1 + P1 + P2) sumrate optimal

by varying P1A + P1B = P1 can achieve any point!!

Yury Polyanskiy MAC tutorial 66

K-user GMAC

[t]

User 1
Tx

User 2
Tx

User K
Tx

Rx

X
1

Xk

Y (t) = X1(t) + · · ·+XK(t) + Z(t)

+
+

. . .

+

=

User 1

User K

Noise

Received

 output

• Assume equal-power setting Pi = P . Capacity region (sumrate):

K∑

i=1

Ri ≤
1

2
log(1 +KP)

Yury Polyanskiy MAC tutorial 67

K-user GMAC

[t]

User 1
Tx

User 2
Tx

User K
Tx

Rx

X
1

Xk

Y (t) = X1(t) + · · ·+XK(t) + Z(t)

+
+

. . .

+

=

User 1

User K

Noise

Received

 output

• single-user decoders achieve:
I FDMA optimal at symmetric point: Ri = 1

2K log(1 +KP)
I TIN+SIC achieves all vertices.
I Rate-Splitting all points of optimal sumrate.

• Is that it? Let us see...
Yury Polyanskiy MAC tutorial 67

K-user GMAC: Reflections

• So total capacity:

Csum =
1

2
log2(1 +KP) bit/rdof

growing to ∞ as K →∞.

• But at the same time, per-user rate:

Csym =
1

2K
log2(1 +KP)→ 0 .

• The crucial performance metric: HRH energy-per-bit
Eb
N0

,
total energy spent
2× total # bits

=
nKP

2nCsum

• As K →∞:
Eb
N0

=
KP

log(1 +KP)
→∞ !!!

• Capacity increases, but each user works harder and moves fewer bits!
• Correct scaling: Ptot = KP should be fixed!

Yury Polyanskiy MAC tutorial 68

K-user GMAC: Reflections

• So total capacity:

Csum =
1

2
log2(1 +KP) bit/rdof

growing to ∞ as K →∞.
• But at the same time, per-user rate:

Csym =
1

2K
log2(1 +KP)→ 0 .

• The crucial performance metric: HRH energy-per-bit
Eb
N0

,
total energy spent
2× total # bits

=
nKP

2nCsum

• As K →∞:
Eb
N0

=
KP

log(1 +KP)
→∞ !!!

• Capacity increases, but each user works harder and moves fewer bits!
• Correct scaling: Ptot = KP should be fixed!

Yury Polyanskiy MAC tutorial 68

K-user GMAC: Reflections

• So total capacity:

Csum =
1

2
log2(1 +KP) bit/rdof

growing to ∞ as K →∞.
• But at the same time, per-user rate:

Csym =
1

2K
log2(1 +KP)→ 0 .

• The crucial performance metric: HRH energy-per-bit
Eb
N0

,
total energy spent
2× total # bits

=
nKP

2nCsum

• As K →∞:
Eb
N0

=
KP

log(1 +KP)
→∞ !!!

• Capacity increases, but each user works harder and moves fewer bits!

• Correct scaling: Ptot = KP should be fixed!

Yury Polyanskiy MAC tutorial 68

K-user GMAC: Reflections

• So total capacity:

Csum =
1

2
log2(1 +KP) bit/rdof

growing to ∞ as K →∞.
• But at the same time, per-user rate:

Csym =
1

2K
log2(1 +KP)→ 0 .

• The crucial performance metric: HRH energy-per-bit
Eb
N0

,
total energy spent
2× total # bits

=
nKP

2nCsum

• As K →∞:
Eb
N0

=
KP

log(1 +KP)
→∞ !!!

• Capacity increases, but each user works harder and moves fewer bits!
• Correct scaling: Ptot = KP should be fixed!

Yury Polyanskiy MAC tutorial 68

Spectral efficiency vs. Eb
N0

• Studying this tradeoff is the favorite pastime of ComSoc

• Sp.eff. ρ , total # of data bits
total real d.o.f.

• We have:

ρ =
1

2
log(1 +KP),

Eb
N0

=
KP

log(1 +KP)

• regardless of K : (and any sumrate-optimal arch)

Eb
N0

=
22ρ − 1

2ρ
≥ −1.59 dB

• Compare to TIN: ρ = K
2 log2(1 + P

1+(K−1)P)
K→∞−→ 1

2 ln 2
Ptot

1+Ptot

ρ =
1

2 ln 2

Ptot
1 + Ptot

,
Eb
N0

= (1 + Ptot) ln 2

• IMPORTANT: ρ ≤ 1
2 ln 2 = 0.72 bit/rdof

• IMPORTANT: Essentially optimal for low sp.eff.

Yury Polyanskiy MAC tutorial 69

Spectral efficiency vs. Eb
N0

• Studying this tradeoff is the favorite pastime of ComSoc

• Sp.eff. ρ , total # of data bits
total real d.o.f.

• We have:

ρ =
1

2
log(1 +KP),

Eb
N0

=
KP

log(1 +KP)

• regardless of K : (and any sumrate-optimal arch)

Eb
N0

=
22ρ − 1

2ρ
≥ −1.59 dB

−2 −1 0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

Eb/No, dB

S
p
e
c
tr

a
l
e
ff
ic

ie
n
c
y
,
b
it
/r

d
o
f

Spectral efficiency vs Eb/No (classic Shannon IT)

Optimal

TIN

CDMA−MF: β=0.5, 1, 3

−2 −1 0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

Eb/No, dB

S
p
e
c
tr

a
l
e
ff
ic

ie
n
c
y
,
b
it
/r

d
o
f

Spectral efficiency vs Eb/No (classic Shannon IT)

Optimal

TIN

CDMA−MF: β=0.5, 1, 3

−2 −1 0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

Eb/No, dB

S
p
e
c
tr

a
l
e
ff
ic

ie
n
c
y
,
b
it
/r

d
o
f

Spectral efficiency vs Eb/No (classic Shannon IT)

Optimal

TIN

CDMA−MF: β=0.5, 1, 3

−2 −1 0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

Eb/No, dB

S
p
e
c
tr

a
l
e
ff
ic

ie
n
c
y
,
b
it
/r

d
o
f

Spectral efficiency vs Eb/No (classic Shannon IT)

Optimal

TIN

CDMA−MF: β=0.5, 1, 3

−2 −1 0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

Eb/No, dB

S
p
e
c
tr

a
l
e
ff
ic

ie
n
c
y
,
b
it
/r

d
o
f

Spectral efficiency vs Eb/No (classic Shannon IT)

Optimal

TIN

CDMA−MF: β=0.5, 1, 3

−2 −1 0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

Eb/No, dB

S
p
e
c
tr

a
l
e
ff
ic

ie
n
c
y
,
b
it
/r

d
o
f

Spectral efficiency vs Eb/No (classic Shannon IT)

Optimal

TIN

CDMA−MF: β=0.5, 1, 3

−2 −1 0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

Eb/No, dB

S
p
e
c
tr

a
l
e
ff
ic

ie
n
c
y
,
b
it
/r

d
o
f

Spectral efficiency vs Eb/No (classic Shannon IT)

Optimal

TIN

CDMA−MF: β=0.5, 1, 3

−2 −1 0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

Eb/No, dB

S
p
e
c
tr

a
l
e
ff
ic

ie
n
c
y
,
b
it
/r

d
o
f

Spectral efficiency vs Eb/No (classic Shannon IT)

• Compare to TIN: ρ = K
2 log2(1 + P

1+(K−1)P)
K→∞−→ 1

2 ln 2
Ptot

1+Ptot

ρ =
1

2 ln 2

Ptot
1 + Ptot

,
Eb
N0

= (1 + Ptot) ln 2

• IMPORTANT: ρ ≤ 1
2 ln 2 = 0.72 bit/rdof

• IMPORTANT: Essentially optimal for low sp.eff.

Yury Polyanskiy MAC tutorial 69

Spectral efficiency vs. Eb
N0

• Studying this tradeoff is the favorite pastime of ComSoc

• Sp.eff. ρ , total # of data bits
total real d.o.f.

• We have:

ρ =
1

2
log(1 +KP),

Eb
N0

=
KP

log(1 +KP)

• regardless of K : (and any sumrate-optimal arch)

Eb
N0

=
22ρ − 1

2ρ
≥ −1.59 dB

• Compare to TIN: ρ = K
2 log2(1 + P

1+(K−1)P)
K→∞−→ 1

2 ln 2
Ptot

1+Ptot

ρ =
1

2 ln 2

Ptot
1 + Ptot

,
Eb
N0

= (1 + Ptot) ln 2

• IMPORTANT: ρ ≤ 1
2 ln 2 = 0.72 bit/rdof

• IMPORTANT: Essentially optimal for low sp.eff.

Yury Polyanskiy MAC tutorial 69

Spectral efficiency vs. Eb
N0

• Studying this tradeoff is the favorite pastime of ComSoc

• Sp.eff. ρ , total # of data bits
total real d.o.f.

• We have:

ρ =
1

2
log(1 +KP),

Eb
N0

=
KP

log(1 +KP)

• regardless of K : (and any sumrate-optimal arch)

Eb
N0

=
22ρ − 1

2ρ
≥ −1.59 dB

• Compare to TIN: ρ = K
2 log2(1 + P

1+(K−1)P)
K→∞−→ 1

2 ln 2
Ptot

1+Ptot

ρ =
1

2 ln 2

Ptot
1 + Ptot

,
Eb
N0

= (1 + Ptot) ln 2

• IMPORTANT: ρ ≤ 1
2 ln 2 = 0.72 bit/rdof

• IMPORTANT: Essentially optimal for low sp.eff.

Yury Polyanskiy MAC tutorial 69

Spectral efficiency vs. Eb
N0

• Studying this tradeoff is the favorite pastime of ComSoc

• Sp.eff. ρ , total # of data bits
total real d.o.f.

• We have:

ρ =
1

2
log(1 +KP),

Eb
N0

=
KP

log(1 +KP)

• regardless of K : (and any sumrate-optimal arch)

Eb
N0

=
22ρ − 1

2ρ
≥ −1.59 dB

• Compare to TIN: ρ = K
2 log2(1 + P

1+(K−1)P)
K→∞−→ 1

2 ln 2
Ptot

1+Ptot

ρ =
1

2 ln 2

Ptot
1 + Ptot

,
Eb
N0

= (1 + Ptot) ln 2
−2 −1 0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

Eb/No, dB

S
p
e
c
tr

a
l
e
ff
ic

ie
n
c
y
,
b
it
/r

d
o
f

Spectral efficiency vs Eb/No (classic Shannon IT)

Optimal

TIN

CDMA−MF: β=0.5, 1, 3

−2 −1 0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

Eb/No, dB

S
p
e
c
tr

a
l
e
ff
ic

ie
n
c
y
,
b
it
/r

d
o
f

Spectral efficiency vs Eb/No (classic Shannon IT)

Optimal

TIN

CDMA−MF: β=0.5, 1, 3

−2 −1 0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

Eb/No, dB

S
p
e
c
tr

a
l
e
ff
ic

ie
n
c
y
,
b
it
/r

d
o
f

Spectral efficiency vs Eb/No (classic Shannon IT)

Optimal

TIN

CDMA−MF: β=0.5, 1, 3

−2 −1 0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

Eb/No, dB

S
p
e
c
tr

a
l
e
ff
ic

ie
n
c
y
,
b
it
/r

d
o
f

Spectral efficiency vs Eb/No (classic Shannon IT)

Optimal

TIN

CDMA−MF: β=0.5, 1, 3

−2 −1 0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

Eb/No, dB

S
p
e
c
tr

a
l
e
ff
ic

ie
n
c
y
,
b
it
/r

d
o
f

Spectral efficiency vs Eb/No (classic Shannon IT)

Optimal

TIN

CDMA−MF: β=0.5, 1, 3

−2 −1 0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

Eb/No, dB

S
p
e
c
tr

a
l
e
ff
ic

ie
n
c
y
,
b
it
/r

d
o
f

Spectral efficiency vs Eb/No (classic Shannon IT)

Optimal

TIN

CDMA−MF: β=0.5, 1, 3

−2 −1 0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

Eb/No, dB

S
p
e
c
tr

a
l
e
ff
ic

ie
n
c
y
,
b
it
/r

d
o
f

Spectral efficiency vs Eb/No (classic Shannon IT)

Optimal

TIN

CDMA−MF: β=0.5, 1, 3

−2 −1 0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

Eb/No, dB

S
p
e
c
tr

a
l
e
ff
ic

ie
n
c
y
,
b
it
/r

d
o
f

Spectral efficiency vs Eb/No (classic Shannon IT)

Optimal

TIN

• IMPORTANT: ρ ≤ 1
2 ln 2 = 0.72 bit/rdof

• IMPORTANT: Essentially optimal for low sp.eff.

Yury Polyanskiy MAC tutorial 69

Spectral efficiency vs. Eb
N0

• Studying this tradeoff is the favorite pastime of ComSoc

• Sp.eff. ρ , total # of data bits
total real d.o.f.

• We have:

ρ =
1

2
log(1 +KP),

Eb
N0

=
KP

log(1 +KP)

• regardless of K : (and any sumrate-optimal arch)

Eb
N0

=
22ρ − 1

2ρ
≥ −1.59 dB

• Compare to TIN: ρ = K
2 log2(1 + P

1+(K−1)P)
K→∞−→ 1

2 ln 2
Ptot

1+Ptot

ρ =
1

2 ln 2

Ptot
1 + Ptot

,
Eb
N0

= (1 + Ptot) ln 2

• IMPORTANT: ρ ≤ 1
2 ln 2 = 0.72 bit/rdof

• IMPORTANT: Essentially optimal for low sp.eff.

Yury Polyanskiy MAC tutorial 69

Modulation

• Given that TIN is not bad for low sp.eff., let us try to achieve it.
• Problem: Per-user rate is ρ

K is very small for a large K.

• Solution: each user modulates some N -signature si ∈ RN

 ...

n

N N N

• Think of N -blocks as new super-symbols. Effective channel:

Y N = s1B1 + s2B2 + · · · sKBk + ZN , ‖si‖ = 1

I Set β = K
N

I new power-constraint: E[B2
i] ≤ NP = Ptot

β .
I new rate: ρN

K = ρ
β in bits / one B-symbol.

I with proper choice should have ρ
β ∼ 1 as ComSoc likes.

Yury Polyanskiy MAC tutorial 70

Modulation

• Given that TIN is not bad for low sp.eff., let us try to achieve it.
• Problem: Per-user rate is ρ

K is very small for a large K. Aside:
I For IT Soc: Channel with C = 0.5 and channel with C = 0.001 are

not fundamentally differnt.
I For ComSoc: First channel is OK (turbo/LDPC/polar), second is a

nightmare.
I Why? SNR needs to be brought first to reasonable level.
I This is the idea of modulation.

I Another issue: how do you do TIN practically? A code with ±1
entries will create a very non-Gaussian interference!

• Solution: each user modulates some N -signature si ∈ RN

 ...

n

N N N

• Think of N -blocks as new super-symbols. Effective channel:

Y N = s1B1 + s2B2 + · · · sKBk + ZN , ‖si‖ = 1

I Set β = K
N

I new power-constraint: E[B2
i] ≤ NP = Ptot

β .
I new rate: ρN

K = ρ
β in bits / one B-symbol.

I with proper choice should have ρ
β ∼ 1 as ComSoc likes.

Yury Polyanskiy MAC tutorial 70

Modulation

• Given that TIN is not bad for low sp.eff., let us try to achieve it.
• Problem: Per-user rate is ρ

K is very small for a large K. Aside:
I For IT Soc: Channel with C = 0.5 and channel with C = 0.001 are

not fundamentally differnt.
I For ComSoc: First channel is OK (turbo/LDPC/polar), second is a

nightmare.
I Why? SNR needs to be brought first to reasonable level.
I This is the idea of modulation.
I Another issue: how do you do TIN practically? A code with ±1

entries will create a very non-Gaussian interference!

• Solution: each user modulates some N -signature si ∈ RN

 ...

n

N N N

• Think of N -blocks as new super-symbols. Effective channel:

Y N = s1B1 + s2B2 + · · · sKBk + ZN , ‖si‖ = 1

I Set β = K
N

I new power-constraint: E[B2
i] ≤ NP = Ptot

β .
I new rate: ρN

K = ρ
β in bits / one B-symbol.

I with proper choice should have ρ
β ∼ 1 as ComSoc likes.

Yury Polyanskiy MAC tutorial 70

Modulation

• Given that TIN is not bad for low sp.eff., let us try to achieve it.
• Problem: Per-user rate is ρ

K is very small for a large K.
• Solution: each user modulates some N -signature si ∈ RN

 ...

n

N N N

• Think of N -blocks as new super-symbols. Effective channel:

Y N = s1B1 + s2B2 + · · · sKBk + ZN , ‖si‖ = 1

I Set β = K
N

I new power-constraint: E[B2
i] ≤ NP = Ptot

β .
I new rate: ρN

K = ρ
β in bits / one B-symbol.

I with proper choice should have ρ
β ∼ 1 as ComSoc likes.

Yury Polyanskiy MAC tutorial 70

 ...

n

N N N

• N -blocks are new super-symbols. Effective channel:

Y N = s1B1 + s2B2 + · · · sKBk + ZN , ‖si‖ = 1

I Set β = K
N

I new power-constraint: E[B2
i] ≤ NP = Ptot

β .
• Side observation:

I If si’s are chosen orthogonally and K = N , this is FDMA (hence
optimal).

I But incurs FBL loss – important when K ∼ n. But ignore for now.
I So why not do so?
I Many reasons: E.g. K may vary, but N should be constant.
I Requires central distribution of signatures among ACTIVE users.
I Also random-like si’s would help TIN decoders.

• Idea 1: Decode via matched-filter + SU decoders:

B̂i = 〈si, Y N 〉 = Bi + Z̃i

• Idea 2: Select si randomly. (attractive sys. arch.)
• When si’s are random and N large:

|〈si, sj〉| ≈
1√
N

w.h.p.

• So SU-decoder sees effective SNR = NP
1+(K−1)P = Ptot

1+Ptot
1
β

Yury Polyanskiy MAC tutorial 71

 ...

n

N N N

• N -blocks are new super-symbols. Effective channel:

Y N = s1B1 + s2B2 + · · · sKBk + ZN , ‖si‖ = 1

I Set β = K
N

I new power-constraint: E[B2
i] ≤ NP = Ptot

β .

• Idea 1: Decode via matched-filter + SU decoders:

B̂i = 〈si, Y N 〉 = Bi + Z̃i

• Idea 2: Select si randomly. (attractive sys. arch.)
• When si’s are random and N large:

|〈si, sj〉| ≈
1√
N

w.h.p.

• So SU-decoder sees effective SNR = NP
1+(K−1)P = Ptot

1+Ptot
1
β

Yury Polyanskiy MAC tutorial 71

 ...

n

N N N

• N -blocks are new super-symbols. Effective channel:

Y N = s1B1 + s2B2 + · · · sKBk + ZN , ‖si‖ = 1

I Set β = K
N

I new power-constraint: E[B2
i] ≤ NP = Ptot

β .
I random (non-orthogonal) signatures
I matched-filter + SU-decoder

• End result:

ρCDMA =
β

2
log2(1 +

Ptot
1 + Ptot

1

β
)

Eb
N0

=
Ptot

2ρCDMA

I As β →∞ we approach TIN.
I So classical CDMA folks (Viterbi...) were only trying to achieve TIN.

Yury Polyanskiy MAC tutorial 72

 ...

n

N N N

• N -blocks are new super-symbols. Effective channel:

Y N = s1B1 + s2B2 + · · · sKBk + ZN , ‖si‖ = 1

I Set β = K
N

I new power-constraint: E[B2
i] ≤ NP = Ptot

β .
I random (non-orthogonal) signatures
I matched-filter + SU-decoder

• End result:

ρCDMA =
β

2
log2(1 +

Ptot
1 + Ptot

1

β
)

Eb
N0

=
Ptot

2ρCDMA−2 −1 0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

Eb/No, dB

S
p
e
c
tr

a
l
e
ff
ic

ie
n
c
y
,
b
it
/r

d
o
f

Spectral efficiency vs Eb/No (classic Shannon IT)

Optimal

TIN

CDMA−MF: β=0.5, 1, 3

−2 −1 0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

Eb/No, dB

S
p
e
c
tr

a
l
e
ff
ic

ie
n
c
y
,
b
it
/r

d
o
f

Spectral efficiency vs Eb/No (classic Shannon IT)

Optimal

TIN

CDMA−MF: β=0.5, 1, 3

−2 −1 0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

Eb/No, dB

S
p
e
c
tr

a
l
e
ff
ic

ie
n
c
y
,
b
it
/r

d
o
f

Spectral efficiency vs Eb/No (classic Shannon IT)

Optimal

TIN

CDMA−MF: β=0.5, 1, 3

−2 −1 0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

Eb/No, dB

S
p
e
c
tr

a
l
e
ff
ic

ie
n
c
y
,
b
it
/r

d
o
f

Spectral efficiency vs Eb/No (classic Shannon IT)

Optimal

TIN

CDMA−MF: β=0.5, 1, 3

−2 −1 0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

Eb/No, dB

S
p
e
c
tr

a
l
e
ff
ic

ie
n
c
y
,
b
it
/r

d
o
f

Spectral efficiency vs Eb/No (classic Shannon IT)

Optimal

TIN

CDMA−MF: β=0.5, 1, 3

−2 −1 0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

Eb/No, dB

S
p
e
c
tr

a
l
e
ff
ic

ie
n
c
y
,
b
it
/r

d
o
f

Spectral efficiency vs Eb/No (classic Shannon IT)

Optimal

TIN

CDMA−MF: β=0.5, 1, 3

−2 −1 0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

Eb/No, dB

S
p
e
c
tr

a
l
e
ff
ic

ie
n
c
y
,
b
it
/r

d
o
f

Spectral efficiency vs Eb/No (classic Shannon IT)

Optimal

TIN

CDMA−MF: β=0.5, 1, 3

−2 −1 0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

Eb/No, dB

S
p
e
c
tr

a
l
e
ff
ic

ie
n
c
y
,
b
it
/r

d
o
f

Spectral efficiency vs Eb/No (classic Shannon IT)

Optimal

TIN

CDMA−MF: β=0.5, 1, 3

I As β →∞ we approach TIN.
I So classical CDMA folks (Viterbi...) were only trying to achieve TIN.

Yury Polyanskiy MAC tutorial 72

CDMA+MUD vs OFDM

• Set β = K
N

• new power-constraint: E[B2
i] ≤ NP = Ptot

β .
• random (non-orthogonal) signatures
• matched-filter + SU-decoder

ρCDMA =
β

2
log2(1 +

Ptot
1 + Ptot

1

β
)

Eb
N0

=
Ptot

2ρCDMA

• multi-user detectors (MUD) improve performance of random-CDMA.
• E.g. MMSE detector yields (Tse-Hanly/Verdú-Shamai formula)

ρMMSE =
β

2
log2(1 + P1 −

1

4
F), P1 =

Ptot
β

where F = (
√
P1(1 +

√
β)2 + 1−

√
P1(1−√β)2 + 1)2

• Allows to beat TIN’s ρ ≤ 0.72 bit/rdof bottleneck.
• Still, industry converged to OFDM : spectrum is too precious.
• IoT: centralized orthogonalization impossible! Comeback of MUD?

Yury Polyanskiy MAC tutorial 73

CDMA+MUD vs OFDM

• Set β = K
N

• new power-constraint: E[B2
i] ≤ NP = Ptot

β .
• random (non-orthogonal) signatures
• matched-filter + SU-decoder

ρCDMA =
β

2
log2(1 +

Ptot
1 + Ptot

1

β
)

Eb
N0

=
Ptot

2ρCDMA

• multi-user detectors (MUD) improve performance of random-CDMA.
• E.g. MMSE detector yields (Tse-Hanly/Verdú-Shamai formula)

ρMMSE =
β

2
log2(1 + P1 −

1

4
F), P1 =

Ptot
β

where F = (
√
P1(1 +

√
β)2 + 1−

√
P1(1−√β)2 + 1)2

−2 0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Eb/No, dB

S
p

e
c
tr

a
l
e

ff
ic

ie
n

c
y
,

b
it
/r

d
o

f

Spectral efficiency vs Eb/No

Optimal

TIN

CDMA−MMSE: β=0.5, 1, 3

−2 0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Eb/No, dB

S
p

e
c
tr

a
l
e

ff
ic

ie
n

c
y
,

b
it
/r

d
o

f

Spectral efficiency vs Eb/No

−2 0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Eb/No, dB

S
p

e
c
tr

a
l
e

ff
ic

ie
n

c
y
,

b
it
/r

d
o

f

Spectral efficiency vs Eb/No

−2 0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Eb/No, dB

S
p

e
c
tr

a
l
e

ff
ic

ie
n

c
y
,

b
it
/r

d
o

f

Spectral efficiency vs Eb/No

−2 0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Eb/No, dB

S
p

e
c
tr

a
l
e

ff
ic

ie
n

c
y
,

b
it
/r

d
o

f

Spectral efficiency vs Eb/No

Optimal

TIN

CDMA−MMSE: best β

−2 0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Eb/No, dB

S
p

e
c
tr

a
l
e

ff
ic

ie
n

c
y
,

b
it
/r

d
o

f

Spectral efficiency vs Eb/No

Optimal

TIN

CDMA−MMSE: best β

−2 0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Eb/No, dB

S
p

e
c
tr

a
l
e

ff
ic

ie
n

c
y
,

b
it
/r

d
o

f

Spectral efficiency vs Eb/No

Optimal

TIN

CDMA−MMSE: best β

• Allows to beat TIN’s ρ ≤ 0.72 bit/rdof bottleneck.
• Still, industry converged to OFDM : spectrum is too precious.
• IoT: centralized orthogonalization impossible! Comeback of MUD?

Yury Polyanskiy MAC tutorial 73

CDMA+MUD vs OFDM

• Set β = K
N

• new power-constraint: E[B2
i] ≤ NP = Ptot

β .
• random (non-orthogonal) signatures
• matched-filter + SU-decoder

ρCDMA =
β

2
log2(1 +

Ptot
1 + Ptot

1

β
)

Eb
N0

=
Ptot

2ρCDMA

• multi-user detectors (MUD) improve performance of random-CDMA.
• E.g. MMSE detector yields (Tse-Hanly/Verdú-Shamai formula)

ρMMSE =
β

2
log2(1 + P1 −

1

4
F), P1 =

Ptot
β

where F = (
√
P1(1 +

√
β)2 + 1−

√
P1(1−√β)2 + 1)2

• Allows to beat TIN’s ρ ≤ 0.72 bit/rdof bottleneck.
• Still, industry converged to OFDM : spectrum is too precious.

• IoT: centralized orthogonalization impossible! Comeback of MUD?

Yury Polyanskiy MAC tutorial 73

CDMA+MUD vs OFDM

• Set β = K
N

• new power-constraint: E[B2
i] ≤ NP = Ptot

β .
• random (non-orthogonal) signatures
• matched-filter + SU-decoder

ρCDMA =
β

2
log2(1 +

Ptot
1 + Ptot

1

β
)

Eb
N0

=
Ptot

2ρCDMA

• multi-user detectors (MUD) improve performance of random-CDMA.
• E.g. MMSE detector yields (Tse-Hanly/Verdú-Shamai formula)

ρMMSE =
β

2
log2(1 + P1 −

1

4
F), P1 =

Ptot
β

where F = (
√
P1(1 +

√
β)2 + 1−

√
P1(1−√β)2 + 1)2

• Allows to beat TIN’s ρ ≤ 0.72 bit/rdof bottleneck.
• Still, industry converged to OFDM : spectrum is too precious.
• IoT: centralized orthogonalization impossible! Comeback of MUD?

Yury Polyanskiy MAC tutorial 73

New problems: many users and random-access

Yury Polyanskiy MAC tutorial 74

The classical model: K-user multiple-access channel

User 1
Tx

User 2
Tx

User K
Tx

Rx

X
1

Xk

Y (t) = X1(t) + · · ·+XK(t) + Z(t)

+
+

. . .

+

=

User 1

User K

Noise

Received

 output

• Before: Fix K, let n→∞. Few users. Large payloads.
• Now: Huge K. Small payload.

• Random-access: User activity – random, uncoordinated

Yury Polyanskiy MAC tutorial 75

The classical model: K-user multiple-access channel

User 1
Tx

User 2
Tx

User K
Tx

Rx

X
1

Xk

Y (t) = X1(t) + · · ·+XK(t) + Z(t)

+
+

. . .

+

=

User 1

User K

Noise

Received

 output

• Before: Fix K, let n→∞. Few users. Large payloads.
• Now: Huge K. Small payload.

• Random-access: User activity – random, uncoordinated

Yury Polyanskiy MAC tutorial 75

On number of sensors (user density)

• Key metric: µ in users/rdof

µ =
of active users per frame

size of frame
• Ktot sensors sending with period Tper (sec) in band B (Hz)

µ =
Ktot

2BTper
• Futuristic example:

I City of 106.
I Each house has 102 devices.
I Each dev sends every 10 min, Tper = 600 s.
I sub-GHz bandwidth is scarce: ISM B = 20 MHz.
I µ ≈ 4 · 10−3.

• Another point of view:
I Traditional comm: focus on sp.eff. ρ vs Eb

N0
. Why?

I ρB
K = per-user speed?

I or is it ρB

speed = number of happy users?

Yury Polyanskiy MAC tutorial 76

On number of sensors (user density)

• Key metric: µ in users/rdof

µ =
of active users per frame

size of frame
• Ktot sensors sending with period Tper (sec) in band B (Hz)

µ =
Ktot

2BTper
• Futuristic example:

I City of 106.
I Each house has 102 devices.
I Each dev sends every 10 min, Tper = 600 s.
I sub-GHz bandwidth is scarce: ISM B = 20 MHz.
I µ ≈ 4 · 10−3.

• Another point of view:
I Traditional comm: focus on sp.eff. ρ vs Eb

N0
. Why?

I ρB
K = per-user speed?

I or is it ρB

speed = number of happy users?

Yury Polyanskiy MAC tutorial 76

New twists compared to classic MAC

Problem 1 “massive”: K and n are comparable.

Relevant asymptotics: K,n→∞ with K
n = µ.

Problem 2 “user-centric” probability of error

Pe , 1
K

∑
j P[X̂j 6= Xj]

Problem 3 “random-access”

indistiguishable users (same-codebook), non-asymptotics.

Yury Polyanskiy MAC tutorial 77

Fundamental limits: for K-user MAC with K ∼ n

Recap: MAC setting and performance metrics

• Perfectly synchronized K-user Gaussian MAC with blocklength n

• Each user transmits log2M ≈ 102 bits.

• Figures of merit: energy-per-bit and user density

Eb
N0

, E[‖Xn‖2]
2 log2M

µ , K
n

Problem 1: “massive” number of users

• Number of users K = µn scales linearly with blocklength!
• Q: Why scale linearly? A: # of devices waking up � time.
• Q: Ok, but what µ should we look at?
A: µ ∼ 10−3.

Yury Polyanskiy MAC tutorial 78

Fundamental limits: for K-user MAC with K ∼ n

Recap: MAC setting and performance metrics

• Perfectly synchronized K-user Gaussian MAC with blocklength n

• Each user transmits log2M ≈ 102 bits.

• Figures of merit: energy-per-bit and user density

Eb
N0

, E[‖Xn‖2]
2 log2M

µ , K
n

Problem 1: “massive” number of users

• Number of users K = µn scales linearly with blocklength!
• Q: Why scale linearly? A: # of devices waking up � time.
• Q: Ok, but what µ should we look at?

A: µ ∼ 10−3.

Yury Polyanskiy MAC tutorial 78

Fundamental limits: for K-user MAC with K ∼ n

Recap: MAC setting and performance metrics

• Perfectly synchronized K-user Gaussian MAC with blocklength n
• Each user transmits log2M ≈ 102 bits.
• Figures of merit: energy-per-bit and user density

Eb
N0

, E[‖Xn‖2]
2 log2M

µ , K
n

Problem 1: “massive” number of users
• Number of users K = µn scales linearly with blocklength!
• Q: Why scale linearly? A: # of devices waking up � time.
• Q: Ok, but what µ should we look at?
A: µ ∼ 10−3. Here is why:

I City of 106.
I Each house has 102 devices.
I Each dev sends 1-10 times/hour.
I sub-GHz bandwidth is scarce, unlikely to ever get > 20 MHz.
I ⇒ K

n ≈ 10−3 . . . 10−2. This relation is unlikely to change soon.
Yury Polyanskiy MAC tutorial 78

Fundamental limits: for K-user MAC with K ∼ n

Recap: MAC setting and performance metrics

• Perfectly synchronized K-user Gaussian MAC with blocklength n
• Each user transmits log2M bits.
• Figures of merit: energy-per-bit and user density

Eb
N0

, E[‖Xn‖2]
2 log2M

µ , K
n

Problem 1: “massive” number of users
• Number of users K = µn scales linearly with blocklength!
• [Chen-Chen-Guo’17]: Fix per-user power to P (i.e. codeword
‖c‖22 ≤ nP), then

logM∗user(K = µn, n, P) ≈ 1

2µ
log(1 + µnP)

• Note: this corresponds to Eb
N0
→∞.

• Our work: What about finite Eb
N0

?

Yury Polyanskiy MAC tutorial 79

New twists compared to classic MAC

Problem 1 “massive”: K and n are comparable

Relevant asymptotics: K,n→∞ with K
n = µ.

Problem 2 “user-centric” probability of error

Pe , 1
K

∑
j P[X̂j 6= Xj]

Problem 3 “random-access”

indistiguishable users (same-codebook), non-asymptotics.

Yury Polyanskiy MAC tutorial 80

Fundamental limits: for K-user MAC with K ∼ n

Recap: MAC setting and performance metrics

• Perfectly synchronized K-user Gaussian MAC with blocklength n
• Each user transmits log2M bits.
• Figures of merit: energy-per-bit and user density

Eb
N0

, E[‖Xn‖2]
2 log2M

µ , K
n

• Regime: K = µn, n→∞.
Problem 2: “user-centric” prob. of error
• For finite Eb

N0
we have (Why? See next...)

P[W1 = Ŵ1, . . .WK = ŴK]→ 0 as n→∞
• ⇒ NEED to switch to per-user Pe, PUPE :

Pe =
1

K

K∑

i=1

P[Wi 6= Ŵi]

Yury Polyanskiy MAC tutorial 81

Eb/N0 →∞ for classical probability of error

Theorem
Suppose K users send one bit each with finite energy E over the GMAC
(with arbitrary n): Y n =

∑K
i=1Xi + Zn. Then we have

P[X1 = X̂1, . . . , XK = X̂K] ≤ E
log e

2 + log 2

logK
.

And, thus, classical probability of error → 1 as K →∞.

Proof:
• WLOG can assume: Y =

∑
ciWi + Z, where ci ∈ Rn and

Wi ∼ Ber(1/2).
• Genie: Reveal vector of Wi’s to within Hamming-distance 1.
• New problem: See Y = cU + Z, U ∼ [K]. Goal: find U .

• Fano + Capacity calculation:

P[U = Û] logK − log 2 ≤ I(cU ;Y)

≤ n

2
log

(
1 +
E
n

)
≤ log e

2
E

Yury Polyanskiy MAC tutorial 82

Eb/N0 →∞ for classical probability of error

Theorem
Suppose K users send one bit each with finite energy E over the GMAC
(with arbitrary n): Y n =

∑K
i=1Xi + Zn. Then we have

P[X1 = X̂1, . . . , XK = X̂K] ≤ E
log e

2 + log 2

logK
.

And, thus, classical probability of error → 1 as K →∞.

Proof:
• WLOG can assume: Y =

∑
ciWi + Z, where ci ∈ Rn and

Wi ∼ Ber(1/2).
• Genie: Reveal vector of Wi’s to within Hamming-distance 1.
• New problem: See Y = cU + Z, U ∼ [K]. Goal: find U .

• Fano + Capacity calculation:

P[U = Û] logK − log 2 ≤ I(cU ;Y)

≤ n

2
log

(
1 +
E
n

)
≤ log e

2
E

Yury Polyanskiy MAC tutorial 82

Eb/N0 →∞ for classical probability of error

Theorem
Suppose K users send one bit each with finite energy E over the GMAC
(with arbitrary n): Y n =

∑K
i=1Xi + Zn. Then we have

P[X1 = X̂1, . . . , XK = X̂K] ≤ E
log e

2 + log 2

logK
.

And, thus, classical probability of error → 1 as K →∞.

Proof:
• WLOG can assume: Y =

∑
ciWi + Z, where ci ∈ Rn and

Wi ∼ Ber(1/2).
• Genie: Reveal vector of Wi’s to within Hamming-distance 1.
• New problem: See Y = cU + Z, U ∼ [K]. Goal: find U .
• Fano + Capacity calculation:

P[U = Û] logK − log 2 ≤ I(cU ;Y)

≤ n

2
log

(
1 +
E
n

)
≤ log e

2
E

Yury Polyanskiy MAC tutorial 82

Eb/N0 →∞ for classical probability of error

Theorem
Suppose K users send one bit each with finite energy E over the GMAC
(with arbitrary n): Y n =

∑K
i=1Xi + Zn. Then we have

P[X1 = X̂1, . . . , XK = X̂K] ≤ E
log e

2 + log 2

logK
.

And, thus, classical probability of error → 1 as K →∞.

Proof:
• WLOG can assume: Y =

∑
ciWi + Z, where ci ∈ Rn and

Wi ∼ Ber(1/2).
• Genie: Reveal vector of Wi’s to within Hamming-distance 1.
• New problem: See Y = cU + Z, U ∼ [K]. Goal: find U .
• Fano + Capacity calculation:

P[U = Û] logK − log 2 ≤ I(cU ;Y) ≤ n

2
log

(
1 +
E
n

)
≤ log e

2
E

Yury Polyanskiy MAC tutorial 82

Eb/N0 →∞ for classical probability of error

Theorem (AWGN)

Suppose K users send one bit each with finite energy E over the GMAC
(with arbitrary n): Y n =

∑K
i=1Xi + Zn. Then we have

P[X1 = X̂1, . . . , XK = X̂K] ≤ E
log e

2 + log 2

logK
.

Same proof:

Theorem (BSC)

Let G be a K × n generating matrix with ≤ E ones per row. Then over
BSC(δ) and all n:

1− P[block error] ≤ d(δ‖δ̄)E + log 2

logK

Puzzle: Genie + Fano method fails for BEC! (Proof by induction works.)

Yury Polyanskiy MAC tutorial 83

Eb/N0 →∞ for classical probability of error

Theorem (AWGN)

Suppose K users send one bit each with finite energy E over the GMAC
(with arbitrary n): Y n =

∑K
i=1Xi + Zn. Then we have

P[X1 = X̂1, . . . , XK = X̂K] ≤ E
log e

2 + log 2

logK
.

Same proof:

Theorem (BSC)

Let G be a K × n generating matrix with ≤ E ones per row. Then over
BSC(δ) and all n:

1− P[block error] ≤ d(δ‖δ̄)E + log 2

logK

Puzzle: Genie + Fano method fails for BEC! (Proof by induction works.)
Yury Polyanskiy MAC tutorial 83

K-user GMAC under PUPE: surprise

• Per-user probability of error as

Pe =
1

K

K∑

i=1

P[Wi 6= Ŵi] .

• Let’s forget about K = µn and consider ...
• Classical regime: K-fixed, power P fixed, n→∞. Symmetric
capacity

Csym(K) =
1

2K
log(1 +KP) .

• But no strong converse (!)

Csym,ε(K) > Csym(K − 1) ∀ε & 1 + logeK

K

• Lesson: When PUPE above logK
K , far from usual GMAC+JPE.

Yury Polyanskiy MAC tutorial 84

K-user GMAC under PUPE: no strong converse

• Let Csym,ε(K) be the max achievable symmetric rate (K-fixed,
n→∞) under PUPE

1

K

K∑

i=1

P[Wi 6= Ŵi] ≤ ε .

Theorem (P.-Telatar’16)

We have: Csym,ε(K, ε) =

{
1

2K log(1 +KP), ε < 1/K

≥ 1
2(K−1) log(1 + (K − 1)P), ε & 1+logeK

K

• Note that sequence: 1
2K log(1 +KP) is monotonically decreasing.

• First part: by union bound PUPE ≤ ε implies JPE ≤ Kε +
strong-converse for GMAC.

• Second part: Choose codebooks for symmetric-rate point of
(K − 1)-GMAC

• Each user sends 0 w.p. ε. Then w.p. 1− (1− ε)K only (K − 1) are
active.

Yury Polyanskiy MAC tutorial 85

K-user GMAC under PUPE: no strong converse

• Let Csym,ε(K) be the max achievable symmetric rate (K-fixed,
n→∞) under PUPE

1

K

K∑

i=1

P[Wi 6= Ŵi] ≤ ε .

Theorem (P.-Telatar’16)

We have: Csym,ε(K, ε) =

{
1

2K log(1 +KP), ε < 1/K

≥ 1
2(K−1) log(1 + (K − 1)P), ε & 1+logeK

K

• Note that sequence: 1
2K log(1 +KP) is monotonically decreasing.

• First part: by union bound PUPE ≤ ε implies JPE ≤ Kε +
strong-converse for GMAC.

• Second part: Choose codebooks for symmetric-rate point of
(K − 1)-GMAC

• Each user sends 0 w.p. ε. Then w.p. 1− (1− ε)K only (K − 1) are
active.

Yury Polyanskiy MAC tutorial 85

K-user GMAC under PUPE: no strong converse

• Let Csym,ε(K) be the max achievable symmetric rate (K-fixed,
n→∞) under PUPE

1

K

K∑

i=1

P[Wi 6= Ŵi] ≤ ε .

Theorem (P.-Telatar’16)

We have: Csym,ε(K, ε) =

{
1

2K log(1 +KP), ε < 1/K

≥ 1
2(K−1) log(1 + (K − 1)P), ε & 1+logeK

K

• Note that sequence: 1
2K log(1 +KP) is monotonically decreasing.

• First part: by union bound PUPE ≤ ε implies JPE ≤ Kε +
strong-converse for GMAC.

• Second part: Choose codebooks for symmetric-rate point of
(K − 1)-GMAC

• Each user sends 0 w.p. ε. Then w.p. 1− (1− ε)K only (K − 1) are
active.

Yury Polyanskiy MAC tutorial 85

New twists compared to classic MAC

Problem 1 “massive”: K and n are comparable

Relevant asymptotics: K,n→∞ with K
n = µ.

Problem 2 “user-centric” probability of error

Pe , 1
K

∑
j P[X̂j 6= Xj]

Problem 3 “random-access”

indistiguishable users (same-codebook), non-asymptotics.

Yury Polyanskiy MAC tutorial 86

Fundamental limits: for K-user MAC with K ∼ n

Recap: MAC setting and performance metrics

• Perfectly synchronized K-user Gaussian MAC with blocklength n
• Each user transmits log2M bits.
• Figures of merit: energy-per-bit and user density

Eb
N0

, E[‖Xn‖2]
2 log2M

µ , K
n

• Regime: K = µn, n→∞.
• PUPE definition: Pe , 1

K

∑K
j=1 P[Xj 6= X̂j].

So what are the results?

• IoT regime: K = µn, nP = const, n→∞.
• Main result 1: Asymptotic tradeoff µ∗(ε,M, EbN0

) satisfies

µconv ≤ µ∗ ≤ µach

Yury Polyanskiy MAC tutorial 87

Fundamental limits: for K-user MAC with K ∼ n

Recap: MAC setting and performance metrics

• Perfectly synchronized K-user Gaussian MAC with blocklength n
• Each user transmits log2M bits.
• Figures of merit: energy-per-bit and user density

Eb
N0

, E[‖Xn‖2]
2 log2M

µ , K
n

• Regime: K = µn, n→∞.
• PUPE definition: Pe , 1

K

∑K
j=1 P[Xj 6= X̂j].

So what are the results?
• IoT regime: K = µn, nP = const, n→∞.
• Main result 1: Asymptotic tradeoff µ∗(ε,M, EbN0

) satisfies

µconv ≤ µ∗ ≤ µach

Yury Polyanskiy MAC tutorial 87

User density vs. Energy-per-bit: best bounds

−2 0 2 4 6 8 10
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Eb/No, dB

U
s
e

r
d

e
n

s
it
y
.,

 u
./

rd
o

f

User density vs Eb/No for asymptotic n, and k = 100 bit/packet, Pe = 0.1 (per user)

Converse

Achievability: Theorem 1
Achievability: TDMA/FDMA

Achievability: TIN

−2 0 2 4 6 8 10
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Eb/No, dB

U
s
e

r
d

e
n

s
it
y
.,

 u
./

rd
o

f

User density vs Eb/No for asymptotic n, and k = 100 bit/packet, Pe = 0.1 (per user)

Converse

Achievability: Theorem 1

Yury Polyanskiy MAC tutorial 88

User density vs. Energy-per-bit: CDMA (w/o MUD)

−2 0 2 4 6 8 10
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Eb/No, dB

U
s
e

r
d

e
n

s
it
y
.,

 u
./

rd
o

f

User density vs Eb/No for asymptotic n, and k = 100 bit/packet, Pe = 0.1 (per user)

Converse

Achievability: Theorem 1

Achievability: TIN

Yury Polyanskiy MAC tutorial 89

K-user GMAC with a per-user Pe

• Each user transmits log2M bits.
• Figures of merit: energy-per-bit and user density

Eb
N0

, E[‖Xn‖2]
2 log2M

µ , K
n

• K = µn, E , nP = const, n→∞.
• Main result 1: Asymptotic tradeoff µ∗(ε,M, EbN0

) satisfies

µconv ≤ µ∗ ≤ µach

• Converse 1 (Fano): (1− ε)µ logM ≤ 1
2 log(1 +KaP) + µh(ε)

• Converse 2 (PPV’11): low Eb
N0

requires (!) logM � 1

logeM .
E

2
−
√
EQ−1(ε)

[P.-Poor-Verdú’11]

10
0

10
1

10
2

10
3

10
4

10
5

10
6

−2

−1

0

1

2

3

4

5

6

7

8

Information bits, k

E
b

/N
o

,
d

B

Achievability (non−feedback)

Converse (non−feedback)

Full feedback (optimal)

Yury Polyanskiy MAC tutorial 90

K-user GMAC with a per-user Pe

• Each user transmits log2M bits.
• Figures of merit: energy-per-bit and user density

Eb
N0

, E[‖Xn‖2]
2 log2M

µ , K
n

• K = µn, E , nP = const, n→∞.
• Main result 1: Asymptotic tradeoff µ∗(ε,M, EbN0

) satisfies

µconv ≤ µ∗ ≤ µach

• Converse 1 (Fano): (1− ε)µ logM ≤ 1
2 log(1 +KaP) + µh(ε)

• Converse 2 (PPV’11): low Eb
N0

requires (!) logM � 1

logeM .
E

2
−
√
EQ−1(ε)

[P.-Poor-Verdú’11]

10
0

10
1

10
2

10
3

10
4

10
5

10
6

−2

−1

0

1

2

3

4

5

6

7

8

Information bits, k

E
b

/N
o

,
d

B
Achievability (non−feedback)

Converse (non−feedback)

Full feedback (optimal)

Yury Polyanskiy MAC tutorial 90

Problem 3: Information theory of random-access

Yury Polyanskiy MAC tutorial 91

Prior work on MAC/random-access

It’s a mess...

• Channel model: collision vs. additive
• Noise model: noiseless, stochastic or worst-case
• Coding with or without feedback (as in CSMA)
• Probability of error: zero, vanishing or fixed > 0.
• Probability of error: per-user vs all-users
• User activity: always-on vs sporadic
• finite blocklength vs n→∞
• Various asymptotics: K = const, n→∞ vs both K,n→∞

Yury Polyanskiy MAC tutorial 92

Prior work on MAC/random-access

It’s a mess...
• Channel model: collision vs. additive
• Noise model: noiseless, stochastic or worst-case
• Coding with or without feedback (as in CSMA)
• Probability of error: zero, vanishing or fixed > 0.
• Probability of error: per-user vs all-users
• User activity: always-on vs sporadic
• finite blocklength vs n→∞
• Various asymptotics: K = const, n→∞ vs both K,n→∞

Yury Polyanskiy MAC tutorial 92

Classification by user activity

MAC

Identifiable users

individual codebooks one (same) codebook

Non-identifiable users

Yury Polyanskiy MAC tutorial 93

Classification by user activity

MAC

Identifiable users

individual codebooks one (same) codebook

Non-identifiable users

All active Some active

Yury Polyanskiy MAC tutorial 93

Classification by user activity

MAC

Identifiable users

individual codebooks one (same) codebook

Non-identifiable users

All active Some active

Active set
known

Active set
unknown

Yury Polyanskiy MAC tutorial 93

Sample of prior work

MAC

Identifiable users

individual codebooks one (same) codebook

Non-identifiable users

All active

• Classical IT
[Liao’72],[Ahlswede’73]

• Orthogonal schemes TDMA/FDMA
• Rate splitting [Rimoldi-Urbanke’99]

• Finite blocklength [MolavianJazi-Laneman’14-16]

• Many-user [Chen-Guo’14]

Yury Polyanskiy MAC tutorial 94

Sample of prior work

MAC

Identifiable users

individual codebooks one (same) codebook

Non-identifiable users

All active Some active

Active set
known

Active set
unknown

• Non-orthogonal CDMA, MUD
• Randomly-spread CDMA

[Tse-Hanly’99], [Verdú-Shamai’99]

• [Mathys’90]

• LDS, SCMA

• Many-access [Chen-Chen-Guo’17]

• Blind-detection for CDMA
• [BarDavid-Plotnik-Rom’93]

• conflict-avoiding codes
[Bassalygo-Pinsker’83], B.Tsybakov

Yury Polyanskiy MAC tutorial 95

Sample of prior work

MAC

Identifiable users

individual codebooks one (same) codebook

Non-identifiable users

All active Some active

Active set
known

Active set
unknown

• Non-orthogonal CDMA, MUD
• Randomly-spread CDMA

[Tse-Hanly’99], [Verdú-Shamai’99]

• [Mathys’90]

• LDS, SCMA

• Many-access [Chen-Chen-Guo’17]

• Blind-detection for CDMA
• [BarDavid-Plotnik-Rom’93]

• conflict-avoiding codes
[Bassalygo-Pinsker’83], B.Tsybakov

Yury Polyanskiy MAC tutorial 95

Sample of prior work

MAC

Identifiable users

individual codebooks one (same) codebook

Non-identifiable users

• ALOHA [Abramson’70]

• [Massey-Mathys’85]

• Collision-resolution protocols
[Capetanakis’79]

• Superimposed codes
[Ericson-Gyorfi’88]

[Furedi-Ruszinkó’99]

• Br-codes [Dyachkov-Rykov’81]

• Coded Slotted ALOHA
[Casini et al’07],[Liva’11]

• Compressed sensing
[Jin-Kim-Rao’11]

Yury Polyanskiy MAC tutorial 96

Key definition: random-access code

+
+

. . .

+

=

User 1

User K

Noise

Received

 output

Definition (P.’17)

f : [M]→ Rn is a random-access code for Ka users if ∃ list-Ka decoder
g s.t.

P[Wj 6∈ g(f(W1) + · · ·+ f(WKa) + Z)] ≤ ε ∀j ∈ [Ka]

where Wi
iid∼ Unif[M].

For ε = 0 this was studied:
• Noiseless channels: Br-codes [Dyackhov-Rykov’81]

• Worst-case noise: superimposed codes [Ericson-Gyorfi’88, Furedi-Ruszinkó’99]

Yury Polyanskiy MAC tutorial 97

Key definition: random-access code

+
+

. . .

+

=

User 1

User K

Noise

Received

 output

Definition (P.’17)

f : [M]→ Rn is a random-access code for Ka users if ∃ list-Ka decoder
g s.t.

P[Wj 6∈ g(f(W1) + · · ·+ f(WKa) + Z)] ≤ ε ∀j ∈ [Ka]

where Wi
iid∼ Unif[M].

For ε > 0 this is:
• Just compressed sensing: Y = Xβ + Z, X is Ka-out-of-M sparse.
• ⇒ studied by many, but not w.r.t. Eb

N0
and not with M = 2Θ(n).

Yury Polyanskiy MAC tutorial 97

Same-codebook codes = compressed sensing

• random-access = all users share same codebook
• ... obviously decoding is upto permutation of users
• New problems: capacity/error-exponent/zero-error capacity
• Equivalent to compressed-sensing [Jin-Kim-Rao’11]

• Let same-codebook (column) vectors be c1, . . . cj .

X =
(
c1 | · · · | cM

)

• Let β ∈ {0, 1}M with βj = 1 if codeword j was transmitted
• Then the problem is:

Y = Xβ + Z, Goal: E[‖β − β̂(Y)‖]→ min

(linear regression with sparsity ‖β‖0 = Ka aka comp.sensing).
• The famous n ∼ 2Ka logeM is just TIN :

logeM ≈
n

2
loge(1 +

P

1 + (Ka − 1)P
) ≈ n

2Ka

So all the L1 (LASSO) frenzy is just to achieve TIN (hehe...)

Yury Polyanskiy MAC tutorial 98

Same-codebook codes = compressed sensing

• random-access = all users share same codebook
• ... obviously decoding is upto permutation of users
• New problems: capacity/error-exponent/zero-error capacity
• Equivalent to compressed-sensing [Jin-Kim-Rao’11]

• Let same-codebook (column) vectors be c1, . . . cj .

X =
(
c1 | · · · | cM

)

• Let β ∈ {0, 1}M with βj = 1 if codeword j was transmitted
• Then the problem is:

Y = Xβ + Z, Goal: E[‖β − β̂(Y)‖]→ min

(linear regression with sparsity ‖β‖0 = Ka aka comp.sensing).

• The famous n ∼ 2Ka logeM is just TIN :

logeM ≈
n

2
loge(1 +

P

1 + (Ka − 1)P
) ≈ n

2Ka

So all the L1 (LASSO) frenzy is just to achieve TIN (hehe...)

Yury Polyanskiy MAC tutorial 98

Same-codebook codes = compressed sensing

• random-access = all users share same codebook
• ... obviously decoding is upto permutation of users
• New problems: capacity/error-exponent/zero-error capacity
• Equivalent to compressed-sensing [Jin-Kim-Rao’11]

• Let same-codebook (column) vectors be c1, . . . cj .

X =
(
c1 | · · · | cM

)

• Let β ∈ {0, 1}M with βj = 1 if codeword j was transmitted
• Then the problem is:

Y = Xβ + Z, Goal: E[‖β − β̂(Y)‖]→ min

(linear regression with sparsity ‖β‖0 = Ka aka comp.sensing).
• The famous n ∼ 2Ka logeM is just TIN :

logeM ≈
n

2
loge(1 +

P

1 + (Ka − 1)P
) ≈ n

2Ka

So all the L1 (LASSO) frenzy is just to achieve TIN (hehe...)
Yury Polyanskiy MAC tutorial 98

Key definition: random-access code

+
+

. . .

+

=

User 1

User K

Noise

Received

 output

Definition (P.’17)

f : [M]→ Rn is a random-access code for Ka users if ∃ list-Ka decoder
g s.t.

P[Wj 6∈ g(f(W1) + · · ·+ f(WKa) + Z)] ≤ ε ∀j ∈ [Ka]

where Wi
iid∼ Unif[M].

This definition is answer to many prayers, but . . .
Bad news: Asymptotics of Ka = µn, n→∞ is nonsense.

Yury Polyanskiy MAC tutorial 99

Prototypical random-access code: ALOHA

Slotted ALOHA protocol (shaded slots indicate collision)

A

B

C

D

E

F

G

H

• n-frame is partitioned into L = n
n1

subframes of length n1

• Each of Ka users places his n1-codeword into a random subframe.
• Per-user error: Pe ≈ P[Bino(Ka − 1, 1

L) > 0] ≈ Ka
L e
−Ka

L

Yury Polyanskiy MAC tutorial 100

Main result 2: random-coding bound

Remark: For classical regime Ka-fixed, n→∞ and ε→ 0

Crandom−access(Ka) =
1

2Ka
log(1 +KaP) .

Yury Polyanskiy MAC tutorial 101

Random-coding achievability bound

• Generate M codewords: ci ∼ N (0, P)⊗n.
• WLOG, users send c1, c2, . . . , cKa .
• Decoder sees

Y = c1 + · · ·+ cKa + Z

• Define sum-codewords c(S) ,
∑

i∈S ci
• ML-decoder (not optimal!)

Ŝ = arg min
S
‖c(S)− Y ‖ .

• Error-analysis:

Pe ≤
Ka∑

t=1

t

Ka
P[t–misguessed]

P[t–misguessed] ≤ P


 ⋃
S∈(Kat)

⋃
S′∈(M−Kat)

‖c(S)− c(S′) + Z‖ ≤ ‖Z‖




Analysis I:
• Condition on Z, c1, . . . , cKa

• Use Chernoff + Gallager ρ-trick for P[∪S′ · · · |cKa
1 , Z]

• Use another Gallager ρ-trick for P[∪S · · · |Z]

• Finally take expectation over Z

Analysis II:
• Define information density appropriately
• Use Feinstein’s trick to bound

P[∪S ∪S′ · · ·] ≤ P[imin(XKa
1 ;Y) < γ] +

(
Ka

t

)(
M
t

)
e−γ

imin = minS it(c(S);Y |c(Sc))
• imin ≈ max of Gaussian process indexed by t-subsets of [Ka]

Classical IT: term S goes → 0 if I(XS ;Y |XSc) >
∑

i∈S Ri

Yury Polyanskiy MAC tutorial 102

Random-coding achievability bound

• Generate M codewords: ci ∼ N (0, P)⊗n.
• WLOG, users send c1, c2, . . . , cKa .
• Decoder sees

Y = c1 + · · ·+ cKa + Z

• Define sum-codewords c(S) ,
∑

i∈S ci
• ML-decoder (not optimal!)

Ŝ = arg min
S
‖c(S)− Y ‖ .

• Error-analysis:

Pe ≤
Ka∑

t=1

t

Ka
P[t–misguessed]

P[t–misguessed] ≤ P


 ⋃
S∈(Kat)

⋃
S′∈(M−Kat)

‖c(S)− c(S′) + Z‖ ≤ ‖Z‖




Analysis I:
• Condition on Z, c1, . . . , cKa

• Use Chernoff + Gallager ρ-trick for P[∪S′ · · · |cKa
1 , Z]

• Use another Gallager ρ-trick for P[∪S · · · |Z]

• Finally take expectation over Z

Analysis II:
• Define information density appropriately
• Use Feinstein’s trick to bound

P[∪S ∪S′ · · ·] ≤ P[imin(XKa
1 ;Y) < γ] +

(
Ka

t

)(
M
t

)
e−γ

imin = minS it(c(S);Y |c(Sc))
• imin ≈ max of Gaussian process indexed by t-subsets of [Ka]

Classical IT: term S goes → 0 if I(XS ;Y |XSc) >
∑

i∈S Ri

Yury Polyanskiy MAC tutorial 102

Random-coding achievability bound

• Generate M codewords: ci ∼ N (0, P)⊗n.
• WLOG, users send c1, c2, . . . , cKa .
• Decoder sees

Y = c1 + · · ·+ cKa + Z

• Define sum-codewords c(S) ,
∑

i∈S ci
• ML-decoder (not optimal!)

Ŝ = arg min
S
‖c(S)− Y ‖ .

• Error-analysis:

Pe ≤
Ka∑

t=1

t

Ka
P[t–misguessed]

P[t–misguessed] ≤ P


 ⋃
S∈(Kat)

⋃
S′∈(M−Kat)

‖c(S)− c(S′) + Z‖ ≤ ‖Z‖




Analysis I:
• Condition on Z, c1, . . . , cKa

• Use Chernoff + Gallager ρ-trick for P[∪S′ · · · |cKa
1 , Z]

• Use another Gallager ρ-trick for P[∪S · · · |Z]

• Finally take expectation over Z

Analysis II:
• Define information density appropriately
• Use Feinstein’s trick to bound

P[∪S ∪S′ · · ·] ≤ P[imin(XKa
1 ;Y) < γ] +

(
Ka

t

)(
M
t

)
e−γ

imin = minS it(c(S);Y |c(Sc))
• imin ≈ max of Gaussian process indexed by t-subsets of [Ka]

Classical IT: term S goes → 0 if I(XS ;Y |XSc) >
∑

i∈S Ri

Yury Polyanskiy MAC tutorial 102

Random-coding achievability bound

• Generate M codewords: ci ∼ N (0, P)⊗n.
• WLOG, users send c1, c2, . . . , cKa .
• Decoder sees

Y = c1 + · · ·+ cKa + Z

• Define sum-codewords c(S) ,
∑

i∈S ci
• ML-decoder (not optimal!)

Ŝ = arg min
S
‖c(S)− Y ‖ .

• Error-analysis:

Pe ≤
Ka∑

t=1

t

Ka
P[t–misguessed]

P[t–misguessed] ≤ P


 ⋃
S∈(Kat)

⋃
S′∈(M−Kat)

‖c(S)− c(S′) + Z‖ ≤ ‖Z‖




Analysis I:
• Condition on Z, c1, . . . , cKa

• Use Chernoff + Gallager ρ-trick for P[∪S′ · · · |cKa
1 , Z]

• Use another Gallager ρ-trick for P[∪S · · · |Z]

• Finally take expectation over Z

Analysis II:
• Define information density appropriately
• Use Feinstein’s trick to bound

P[∪S ∪S′ · · ·] ≤ P[imin(XKa
1 ;Y) < γ] +

(
Ka

t

)(
M
t

)
e−γ

imin = minS it(c(S);Y |c(Sc))
• imin ≈ max of Gaussian process indexed by t-subsets of [Ka]

Classical IT: term S goes → 0 if I(XS ;Y |XSc) >
∑

i∈S Ri

Yury Polyanskiy MAC tutorial 102

Numerical evaluation

0 50 100 150 200 250 300
−2

0

2

4

6

8

10

active users

E
b
/N

0
,
d
B

Energy−per−bit vs. number of users. Payload k = 100 bit, frame n = 30000 rdof, P
e
 = 0.1

NOMA: random−coding achievability

Lower bound

For Ka . 50 dominant term t ≤ 3
For Ka & 150 dominant term t = Ka

Yury Polyanskiy MAC tutorial 103

Numerical evaluation

0 50 100 150 200 250 300
−2

0

2

4

6

8

10

active users

E
b
/N

0
,
d
B

Energy−per−bit vs. number of users. Payload k = 100 bit, frame n = 30000 rdof, P
e
 = 0.1

NOMA: random−coding achievability

Lower bound

For Ka . 50 dominant term t ≤ 3
For Ka & 150 dominant term t = Ka

Yury Polyanskiy MAC tutorial 103

Fundamental limits vs. ALOHA

0 50 100 150 200 250 300
−2

0

2

4

6

8

10

active users

E
b
/N

0
,
d
B

Energy−per−bit vs. number of users. Payload k = 100 bit, frame n = 30000 rdof, P
e
 = 0.1

NOMA: random−coding achievability

Lower bound

ALOHA

Yury Polyanskiy MAC tutorial 104

Fundamental limits vs. TIN (aka CDMA w/o MUD)

0 50 100 150 200 250 300
−2

0

2

4

6

8

10

active users

E
b

/N
0

,
d

B

Energy−per−bit vs. number of users. Payload k = 100 bit, frame n = 30000 rdof, P
e
 = 0.1

ALOHA

DT−TIN bound

NOMA: random−coding achievability

Lower bound

Yury Polyanskiy MAC tutorial 105

Fundamental limits vs. Coded Slotted ALOHA

0 50 100 150 200 250 300
−2

0

2

4

6

8

10

active users

E
b

/N
0

,
d

B

Energy−per−bit vs. number of users. Payload k = 100 bit, frame n = 30000 rdof, P
e
 = 0.1

ALOHA

NOMA: random−coding achievability

Lower bound

Coded ALOHA (irreg., rep. rate = 3.6)

Coded ALOHA (2−regular)

Yury Polyanskiy MAC tutorial 106

. . . and randomly-spread CDMA w/ optimal MUD

0 50 100 150 200 250 300
−2

0

2

4

6

8

10

active users

E
b

/N
0

,
d

B

Energy−per−bit vs. number of users. Payload k = 100 bit, frame n = 30000 rdof, P
e
 = 0.1

ALOHA

NOMA: random−coding achievability

Lower bound

Coded ALOHA (irreg., rep. rate = 3.6)

Coded ALOHA (2−regular)
Random CDMA, BPSK, optimal MUD; K

a
/N=1

Yury Polyanskiy MAC tutorial 107

New twists compared to classic MAC

Problem 1 “massive”: K and n are comparable

Relevant asymptotics: K,n→∞ with K
n = µ.

Problem 2 “user-centric” probability of error

Pe , 1
K

∑
j P[X̂j 6= Xj]

Problem 3 “random-access”

indistiguishable users (same-codebook), non-asymptotics.

Yury Polyanskiy MAC tutorial 108

Low-complexity random-access over GMAC

Yury Polyanskiy MAC tutorial 109

Massive Connectivity

Key challenge:

Providing multiple-access to massive number of
UNCOORDINATED

and infrequently communicating devices

Yury Polyanskiy MAC tutorial 110

Massive Connectivity

Key challenge:

Providing multiple-access to massive number of
UNCOORDINATED

and infrequently communicating devices

Typical scenario:
• Huge # of users Ktot ≈ 106 − 107

• Still large # of active users Ka ≈ 1− 500

• Small data payload, e.g. k = 100 bits
• Blocklength n ∼ 104

• k
n � 1, but system spectral efficiency ρ = Ka·k

n ∼ 1

Yury Polyanskiy MAC tutorial 110

Massive Connectivity

Key challenge:

Providing multiple-access to massive number of
UNCOORDINATED

and infrequently communicating devices

Typical scenario:
• Huge # of users Ktot ≈ 106 − 107

• Still large # of active users Ka ≈ 1− 500

• Small data payload, e.g. k = 100 bits
• Blocklength n ∼ 104

• k
n � 1, but system spectral efficiency ρ = Ka·k

n ∼ 1

The goal is to communicate with the smallest possible energy-per-bit

Yury Polyanskiy MAC tutorial 110

Simple scheme I: Treat interference as noise (TIN)

Theorem (DT-TIN bound)

There exists C ⊂ B(0,
√
nP) of size M such that

P[X1 6∈ {top-Ka closest c/w to Y }] . E
[
e−|i(X;X+Z)−logM |+

]

where Y = X1 + · · ·+XKa + Z, Xi – uniform on C, X ∼ N (0, P)⊗n

and Z ∼ N (0, 1)⊗n.

Remarks:
• Decoder searches for top-Ka closest codewords
• Achieves about logM ≈ nCTIN (P)−

√
nVTIN (P)Q−1(ε)

CTIN (P) = 1
2 log

(
1 + P

1+(Ka−1)P

)
, VTIN (P) = P log2 e

1+KaP
.

• Spectral efficiency as Ka →∞ is bounded by log2 e
2 ≈ 0.72 bit.

Yury Polyanskiy MAC tutorial 111

Simple scheme I: Treat interference as noise (TIN)

0 50 100 150 200 250 300
−2

0

2

4

6

8

10

active users

E
b

/N
0

,
d

B

Energy−per−bit vs. number of users. Payload k = 100 bit, frame n = 30000 rdof, P
e
 = 0.1

ALOHA

DT−TIN bound

NOMA: random−coding achievability

Lower bound

Yury Polyanskiy MAC tutorial 112

Simple scheme II: T -fold ALOHA

Slotted ALOHA protocol (shaded slots indicate collision)

A

B

C

D

E

F

G

H

• Each user places his n1-codeword into one of L subframes.
• Assume any T -fold collision is resolvable

• Per-user error: Pe ≈ P[Bino(Ka − 1, 1
L) > T] ≈

(
Ka
L

)T
e−

Ka
L

Yury Polyanskiy MAC tutorial 113

Simple scheme II: T -fold ALOHA

0 50 100 150 200 250 300
−2

0

2

4

6

8

10

active users

E
b

/N
0

,
d

B
Energy−per−bit vs. number of users. Payload k = 100 bit, frame n = 30000 rdof, P

e
 = 0.1

NOMA: random−coding achievability

Lower bound

ALOHA

DT−TIN bound

5−fold ALOHA

Want T -MAC codes for T ∼ 3-10

Yury Polyanskiy MAC tutorial 114

Simple scheme II: T -fold ALOHA

0 50 100 150 200 250 300
−2

0

2

4

6

8

10

active users

E
b

/N
0

,
d

B
Energy−per−bit vs. number of users. Payload k = 100 bit, frame n = 30000 rdof, P

e
 = 0.1

NOMA: random−coding achievability

Lower bound

ALOHA

DT−TIN bound

5−fold ALOHA

Want T -MAC codes for T ∼ 3-10

Yury Polyanskiy MAC tutorial 114

Our scheme: high-level idea

Xn
1

Xn
2

Zn

Y n

• Send lattice points
• Decode sum of codewords via single-user decoder [Nazer-Gastpar’11]

• Use a subset of points forming a Sidon set
(all sums c1 + c2 distinct)

• Single-lattice (no MMSE scaling): R ≈ 1
2K log+ P

• Nested-lattice (with MMSE scaling): R ≈ 1
2K log+

(
1
K + P

)

Warning: issues with same-dither

• Lose power-factor compared to 1
2K log(1 +KP)

Yury Polyanskiy MAC tutorial 115

Sample performance of new scheme

Ka

50 100 150 200 250 300

E
b
/N

0
 [
d
B

]

0

5

10

15

20

25

30

Random Coding

TIN

ALOHA

5-fold ALOHA

Our Scheme

n = 30, 000, k = 100, Pe = 0.05Yury Polyanskiy MAC tutorial 116

Related work

Many ideas appeared separately:

• Compute-and-forward [Nazer-Gastpar’11]
• Explicit codes for the modulo-2 binary adder channel [Lindström’69,
Bar-David et al.’93]

• 2-user codes for Fq-adder MAC [Dumer-Zinoviev’78, Dumer’95]
• Concatenation of codes with good minimum distance and codes for
the BAC [Ericson-Levenshtein’94]

• Concatenation of CoF inner codes with syndrome decoding for
compressed sensing [Lee-Hong’16]

Yury Polyanskiy MAC tutorial 117

Details of our scheme

Three phases:
• Sidon set: {0, 1}k → Fnp
• Compute-and-forward: Fnp → Rn1

• T -fold ALOHA: Place n1-codeword in a random subframe

Yury Polyanskiy MAC tutorial 118

Concatenation scheme

Inner code (CoF):
Convert T -user GMAC into a mod-p (noiseless) adder MAC.

w1 Elin c1 ∈ Clin

wT Elin cT ∈ Clin

w1, . . . ,wT are vectors in Zp

Clin is linear code over Zp

... y

z

Yury Polyanskiy MAC tutorial 119

Concatenation scheme

Inner code (CoF):
Convert T -user GMAC into a mod-p (noiseless) adder MAC.

w1 Elin c1 ∈ Clin

wT Elin cT ∈ Clin

w1, . . . ,wT are vectors in Zp

Clin is linear code over Zp

... y

z

modp Dlin

yBAC

yBAC =
[∑T

i=1 wi

]
mod p

Yury Polyanskiy MAC tutorial 119

Concatenation scheme

Inner code (CoF):
Convert T -user GMAC into a mod-p (noiseless) adder MAC.
Outer code (BAC):
CBAC code for mod-p adder T -MAC Here: only p = 2

w1 Elin c1 ∈ Clin

wT Elin cT ∈ Clin

w1, . . . ,wT are vectors in Zp

Clin is linear code over Zp

... y

z

modp Dlin

yBAC

yBAC =
[∑T

i=1 wi

]
mod p

Yury Polyanskiy MAC tutorial 119

Concatenation scheme

Inner code (CoF):
Convert T -user GMAC into a mod-p (noiseless) adder MAC.
Outer code (BAC):
CBAC code for mod-p adder T -MAC Here: only p = 2

w1 Elin c1 ∈ Clin

wT Elin cT ∈ Clin

w1, . . . ,wT are vectors in Zp

Clin is linear code over Zp

... y

z

modp Dlin

yBAC

yBAC =
[∑T

i=1 wi

]
mod p

m1 EBAC

mt EBAC

... DBAC

Yury Polyanskiy MAC tutorial 119

More on the CoF phase

• Clin ⊂ {0, 1}n is a binary linear code (shifted to ±
√
P)

• Receive y =
∑T

i=1 xi + z, shift, rescale, take mod-2, get

yCoF = [x + z] mod 2

where x = [
∑

i xi] mod 2 ∈ Clin ⊂ {0, 1}n
• The channel from x to yCoF is a BMS with folded Gsn noise

=⇒ Designing Clin is a standard coding task
Normal approximation: log |Clin| ≈ nC −

√
nV Q−1(εcode)

Yury Polyanskiy MAC tutorial 120

More on the CoF phase

• Clin ⊂ {0, 1}n is a binary linear code (shifted to ±
√
P)

• Receive y =
∑T

i=1 xi + z, shift, rescale, take mod-2, get

yCoF = [x + z] mod 2

where x = [
∑

i xi] mod 2 ∈ Clin ⊂ {0, 1}n
• The channel from x to yCoF is a BMS with folded Gsn noise

=⇒ Designing Clin is a standard coding task
Normal approximation: log |Clin| ≈ nC −

√
nV Q−1(εcode)

What is lost in the conversion y 7→ yCoF?

Sum-capacity of y grows like log(T · P)
Capacity of yCoF only grows like log(P)

Yury Polyanskiy MAC tutorial 120

More on the CoF phase

• Clin ⊂ {0, 1}n is a binary linear code (shifted to ±
√
P)

• Receive y =
∑T

i=1 xi + z, shift, rescale, take mod-2, get

yCoF = [x + z] mod 2

where x = [
∑

i xi] mod 2 ∈ Clin ⊂ {0, 1}n
• The channel from x to yCoF is a BMS with folded Gsn noise

=⇒ Designing Clin is a standard coding task
Normal approximation: log |Clin| ≈ nC −

√
nV Q−1(εcode)

What is lost in the conversion y 7→ yCoF?

Sum-capacity of y grows like log(T · P)
Capacity of yCoF only grows like log(P)

T -fold ALOHA reduces “power-loss” to 1/T instead of 1/Ka

Yury Polyanskiy MAC tutorial 120

More on the BAC Phase

yBAC =

[
T∑

i=1

wi

]
mod 2, w1, . . . ,wT ∈ CBAC

Need to decode a list {w1, . . . ,wT }
Symmetric-capacity: Csym = 1

T

Yury Polyanskiy MAC tutorial 121

More on the BAC Phase

yBAC =

[
T∑

i=1

wi

]
mod 2, w1, . . . ,wT ∈ CBAC

Need to decode a list {w1, . . . ,wT }
Symmetric-capacity: Csym = 1

T

How to construct explicit codes?
• Let H = [h1| · · · |hN] be the parity-check matrix of a T -error
correcting code

• ⇒ all T -sums of columns are distinct
• Set CBAC = {h1, . . . ,hN}
• BCH parity check matrix: RBAC = 1

T (optimal!)
• Encoding: easy (just compute α, α3, · · · , α2T−1)

Yury Polyanskiy MAC tutorial 121

More on the BAC Phase

yBAC =

[
T∑

i=1

wi

]
mod 2, w1, . . . ,wT ∈ CBAC

Need to decode a list {w1, . . . ,wT }
Symmetric-capacity: Csym = 1

T

How to construct explicit codes?
• Let H = [h1| · · · |hN] be the parity-check matrix of a T -error
correcting code

• ⇒ all T -sums of columns are distinct
• Set CBAC = {h1, . . . ,hN}
• BCH parity check matrix: RBAC = 1

T (optimal!)
• Encoding: easy (just compute α, α3, · · · , α2T−1)

Problem: decoding complexity of BCH linear in n = 2k − 1
Yury Polyanskiy MAC tutorial 121

More on the BAC Phase: Decoding BCH

Decoding:

• α1, . . . , αT ∈ F2k are messages
• yBAC = He′ – syndrome (!) ⇒ we know

∑
i(αi)

s, s ≤ 2T

• Error locator: Berlekamp-Massey yields coeffs of

σ(z) =

T∏

i=1

(1 + αiz)

• Find roots of σ(·) e.g. via [Rabin’80]

• Invert roots: using the identity α−1 = α2k − 1

Total complexity: O(kT 2 log2(T) log log(T)) operations in F2k

Yury Polyanskiy MAC tutorial 122

Spectral Efficiency > 1

The spectral efficiency ρ = Ka·k
n of our scheme is at most Rlin

What if ρ > 1?

Solution: - work with p > 2

• CoF phase requires good linear codes over Fp
• BAC phase can be implemented using H = [h1| · · · |hn] of a

[n = ps − 1, n− k = 2T] Reed-Solomon code over Fps with

CBAC = {αhi : α ∈ Fps \ {0}, i = 1, . . . , ps − 1}

• Can use nested lattice to achieve the 1.53dB shaping gain
• Drawback: hard to analyze finite blocklength

Yury Polyanskiy MAC tutorial 123

Approximate performance

Asymptotic optimum:
(
Eb
N0

)∗
= 22ρ−1

2ρ , with ρ = Ka·k
n .

Let L = Ka
αT for α ∈ (0, 1] be number of subframes

Pe ≈ P[T -collision] = Pr
(

Binomial
(
Ka − 1, αTKa

)
≥ T

)

Linear code rate Rlin = ρ
α

∆ =

(
Eb
N0

)
dB−

(
Eb
N0

)∗
dB

≈ 6ρ
1− α
α

+ 10 log10(α)

+10 log10(T)−10 log10(1− 2−2ρ)+1.53

T-Collision avoidance loss due to a 1/α increase in spectral efficiency

Yury Polyanskiy MAC tutorial 124

Approximate performance

Asymptotic optimum:
(
Eb
N0

)∗
= 22ρ−1

2ρ , with ρ = Ka·k
n .

Let L = Ka
αT for α ∈ (0, 1] be number of subframes

Pe ≈ P[T -collision] = Pr
(

Binomial
(
Ka − 1, αTKa

)
≥ T

)

Linear code rate Rlin = ρ
α

∆ =

(
Eb
N0

)
dB−

(
Eb
N0

)∗
dB

≈ 6ρ
1− α
α

+ 10 log10(α)+10 log10(T)

−10 log10(1− 2−2ρ)+1.53

CoF loss from the reduction y 7→ yCoF

Yury Polyanskiy MAC tutorial 124

Approximate performance

Asymptotic optimum:
(
Eb
N0

)∗
= 22ρ−1

2ρ , with ρ = Ka·k
n .

Let L = Ka
αT for α ∈ (0, 1] be number of subframes

Pe ≈ P[T -collision] = Pr
(

Binomial
(
Ka − 1, αTKa

)
≥ T

)

Linear code rate Rlin = ρ
α

∆ =

(
Eb
N0

)
dB−

(
Eb
N0

)∗
dB

≈ 6ρ
1− α
α

+ 10 log10(α)+10 log10(T)−10 log10(1− 2−2ρ)

+1.53

Loss of +1 in computation rate

Yury Polyanskiy MAC tutorial 124

Approximate performance

Asymptotic optimum:
(
Eb
N0

)∗
= 22ρ−1

2ρ , with ρ = Ka·k
n .

Let L = Ka
αT for α ∈ (0, 1] be number of subframes

Pe ≈ P[T -collision] = Pr
(

Binomial
(
Ka − 1, αTKa

)
≥ T

)

Linear code rate Rlin = ρ
α

∆ =

(
Eb
N0

)
dB−

(
Eb
N0

)∗
dB

≈ 6ρ
1− α
α

+ 10 log10(α)+10 log10(T)−10 log10(1− 2−2ρ)+1.53

Shaping loss

Yury Polyanskiy MAC tutorial 124

Low-complexity schemes: summary

50 100 150 200 250 300

0

5

10

15

20

25

30
NOMA: random-coding achievability

ALOHA

DT-TIN bound

5-fold ALOHA

Our Scheme - Exact

Our Scheme - Estimated

Yury Polyanskiy MAC tutorial 125

Other ideas for low-complexity schemes

• Work in progress by several groups
I Narayanan-Chamberland
I P.-Frolov
I Durisi-Dalai
I Popovski-Liva
I ... (sorry to those I forgot)

• Methods we did not cover:
I Coded Slotted ALOHA
I ... including with MPR capability
I iterative decoding same-codebook LDPCs
I super-imposed codes

• Problem is even more interesting with fading
I Random channel gains Hj help distinguish users.
I With many users, order statistics of Hj ’s becomes deterministic.

Yury Polyanskiy MAC tutorial 126

Outline – revisited

Envisioned solution:
• To save battery: sensors sleep all the time, except transmissions.
• ... uncoordinated transmissions.
• ... they wake up, blast the packet, go back to sleep.
• Focus on low-energy (low Eb/N0)
• Focus on fundamental limits
• ... but with low-complexity solutions (single-user-only decoding).

Issues we need to understand:
1 packets are short: finite-blocklength (FBL) info theory
2 multiple-access channel: Classical MAC
3 low-complexity MAC: modulation, CDMA, multi-user detection
4 massive random-access: many users, same-codebook codes (NEW)

Supporting 10 users at 1Mbps is much easier than 1M users at 10bps.

Yury Polyanskiy MAC tutorial 127

Outline – revisited

Envisioned solution:
• To save battery: sensors sleep all the time, except transmissions.
• ... uncoordinated transmissions.
• ... they wake up, blast the packet, go back to sleep.
• Focus on low-energy (low Eb/N0)
• Focus on fundamental limits
• ... but with low-complexity solutions (single-user-only decoding).

Issues we need to understand:
1 packets are short: finite-blocklength (FBL) info theory
2 multiple-access channel: Classical MAC
3 low-complexity MAC: modulation, CDMA, multi-user detection
4 massive random-access: many users, same-codebook codes (NEW)

Supporting 10 users at 1Mbps is much easier than 1M users at 10bps.

Yury Polyanskiy MAC tutorial 127

Thank you!

Yury Polyanskiy MAC tutorial 128

Extra: More plots

Yury Polyanskiy MAC tutorial 129

ALOHA + codes repairing 5-fold collisions

0 50 100 150 200 250 300
−2

0

2

4

6

8

10

active users

E
b
/N

0
,
d
B

Energy−per−bit vs. number of users. Payload k = 100 bit, frame n = 30000 rdof, P
e
 = 0.1

NOMA: random−coding achievability

Lower bound

ALOHA

DT−TIN bound

5−fold ALOHA

Yury Polyanskiy MAC tutorial 130

Other schemes...

0 50 100 150 200 250 300
−2

0

2

4

6

8

10

active users

E
b

/N
0

,
d

B

Energy−per−bit vs. number of users. Payload k = 100 bit, frame n = 30000 rdof, P
e
 = 0.1

ALOHA

ALOHA + 5MAC

NOMA: Treat interference as noise (TIN)

NOMA: random−coding achievability

Lower bound

Coded ALOHA (irreg., rep. rate = 3.6)

Coded ALOHA (2−regular)
Random CDMA, BPSK, optimal MUD; K

a
/N=1

Yury Polyanskiy MAC tutorial 131

