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• Cell phone is powered on.
• Announces its presence on PRACH.
• Base station (periodically) gives permission to send.
• Summary:

I Random-Access is very low duty cycle.
I BS makes access ORTHOGONAL across users
I bulk of communication is over an interference-free single-user AWGN.

• What’s new in 5G?
Yury Polyanskiy MAC tutorial 2



Internet-of-Things

• Smart Agriculture
• Advanced Metering systems
• Fire alarms
• Home security and automation
• Oilfield and pipeline monitoring

• M-health
• Smart parking, intelligent traffic
• Waste and recycling
• Asset tracking and geo-location
• Animal tracking and livestock

Expected density: 100-500 devices per household/office
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Two breeds of IoT
LPWAN

One basestation covers 10 km
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IoT is about battery life

Q: What drains the battery? Examples (@ 3.3V):

Arduino (w/o reg.) XBee (Zigbee) LP-WAN sensor

Sleep 5 uA 1 uA 1-2 uA
CPU Running 50 uA 40 uA 60 uA

Radio Xmit 40 mA 20 mA

• Duty-cycle of 1 sec / 20 min radio lasts 6-10 yr / AA bat.
• Caveat: Calculation assumes single-user
• Key problem: Energy usage will grow with # of sensors deployed.
How much?

• Sad: depends on technology? Happy: IT comes to rescue!
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Outline

Envisioned solution:
• To save battery: sensors sleep all the time, except transmissions.
• ... uncoordinated transmissions.
• ... they wake up, blast the packet, go back to sleep.
• Focus on low-energy (low Eb/N0)
• Focus on fundamental limits
• ... but with low-complexity solutions (single-user-only decoding).

Issues we need to understand:
1 packets are short: finite-blocklength (FBL) info theory
2 multiple-access channel: Classical MAC
3 low-complexity MAC: modulation, CDMA, multi-user detection
4 massive random-access: many users, same-codebook codes (NEW)

Supporting 10 users at 1Mbps is much easier than 1M users at 10bps.
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FBL Info Theory: short intro
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Case study: 1000-bit BSC

• Consider channel BSC(n = 1000, δ = 0.11)

• How many data bits can we transmit with (block) Pe ≤ 10−3?
• Attempt 1: Repetition

k = 47 bits via [21,1,21]-code

• Attempt 2: Reed-Muller

k = 112 bits via [64,7,32]-code

• Shannon’s prediction: C = 0.5 bit so

k ≈ 500 bit

• Finite blocklength IT:
414 ≤ k ≤ 416
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Abstract communication problem

Noisy channel

Goal: Decrease corruption of data caused by noise
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Channel coding: principles

Noisy channel

Data bits Redundancy

Goal: Decrease corruption of data caused by noise

Solution: Code to diminish probability of error Pe.

Key metrics: Rate and Pe
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Channel coding: principles

Possible

Impossible

Data bits Redundancy

Pe Reliability−Rate tradeoff

Rate

Noisy channel
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Channel coding: principles

Data bits Redundancy

Pe Reliability−Rate tradeoff

Rate

Noisy channel
Decreasing Pe further:

1. More redundancy
Bad: loses rate

2. Increase blocklength!

n = 10
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Channel coding: principles

Data bits Redundancy

Pe Reliability−Rate tradeoff

Rate

Noisy channel
Decreasing Pe further:

1. More redundancy
Bad: loses rate

2. Increase blocklength!

n = 100
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Noisy channel

Data bits Redundancy

Pe Reliability−Rate tradeoff

Rate
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Channel coding: principles

Noisy channel

Data bits Redundancy

Pe Reliability−Rate tradeoff

Rate

Decreasing Pe further:

1. More redundancy
Bad: loses rate

2. Increase blocklength!

n = 106
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Channel coding: Shannon capacity

Noisy channel

Data bits Redundancy

Pe Reliability−Rate tradeoff

C

Channel capacity

Rate

Shannon: Fix R < C
Pe ↘ 0 as n→∞
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Channel coding: Shannon capacity

Noisy channel

Data bits Redundancy

Pe Reliability−Rate tradeoff

C Rate

Channel capacity

Shannon: Fix R < C
Pe ↘ 0 as n→∞

Question:
For what n will Pe < 10−3?
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Channel coding: Gaussian approximation

Noisy channel

Data bits Redundancy

Pe Reliability−Rate tradeoff

C Rate

Channel capacity

Channel dispersion

Shannon: Fix R < C
Pe ↘ 0 as n→∞

Question:
For what n will Pe < 10−3?

Answer:

n & const · V
C2
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Channel coding: Gaussian approximation

Noisy channel

Data bits Redundancy

Pe Reliability−Rate tradeoff

C Rate

Channel capacity

Channel dispersion
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How to describe evolution of the boundary?

Pe Reliability−Rate tradeoff

C Rate

Classical results:
• Vertical asymptotics: fixed rate, reliability function
Elias, Dobrushin, Fano, Shannon-Gallager-Berlekamp

• Horizontal asymptotics: fixed ε, strong converse,
√
n terms

Wolfowitz, Weiss, Dobrushin, Strassen, Kemperman
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How to describe evolution of the boundary?

Pe Reliability−Rate tradeoff

C Rate

XXI century:
• Tight non-asymptotic bounds
• Remarkable precision of normal approximation
• Extended results on horizontal asymptotics
AWGN, O(log n), cost constraints, feedback, etc.
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Finite blocklength fundamental limit

Pe Reliability−Rate tradeoff

C Rate

Definition

R∗(n, ε) = max

{
1

n
logM : ∃(n,M, ε)-code

}

(max. achievable rate for blocklength n and prob. of error ε)

Rough summary: For ergodic channels

R∗(n, ε) ≈ C −
√
V

n
Q−1(ε) .
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Connection to CLT

• Let PY n|Xn = PnY |X be memoryless.

• Converse bounds (roughly):

R∗(n, ε) . ε-th quantile of
1

n
log

dPY n|Xn

dQY n

• Achievability bounds (roughly):

R∗(n, ε) & ε-th quantile of
1

n
log

dPY n|Xn

dQY n

• Info-density i(Xn;Y n) = log
dPY n|Xn

dQY n
is a sum of iid.

• Choice of QY n is an art. Often c.a.o.d. works. Then,
E[i(Xn;Y n] = nC.

• So by CLT
R∗(n, ε) ≈ ε-quantile of N (C, V/n)
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FBL achievability bounds

• A random transformation A
PY |X−→ B

• (M, ε) codes:

W → A→ B→ Ŵ W ∼ Unif{1, . . . ,M}
P[W 6= Ŵ ] ≤ ε

• For every PXY = PXPY |X define information density:

ı(x; y) , log
dPY |X=x

dPY
(y)

I E[ı(X;Y )] = I(X;Y )
I Var[ı(X;Y )|X] = V
I Memoryless channels: ı(An;Bn) = sum of iid.

ı(An;Bn)
d≈ nI(A;B) +

√
nV Z, Z ∼ N (0, 1)

• Goal: Prove FBL bounds.
As by-product: R∗(n, ε) & C −

√
V
nQ
−1(ε)
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DT bound

Theorem (Dependence Testing Bound)

For any PX there exists a code with M codewords and

ε ≤ E
[
exp

{
−
∣∣∣ıX;Y (X;Y )− log

M−1

2

∣∣∣
+
}]

.

Highlights:
• Strictly stronger than Feinstein-Shannon
• . . . and no optimization over γ!
• Easier to compute than RCU

• Easier asymptotics: ε ≤ E
[
e−n|

1
n
ı(Xn;Y n)−R|+

]

≈ Q
(√

n
V {I(X;Y )−R}

)

• Has a form of f -divergence: 1− ε ≥ Df (PXY ‖PXPY )

Yury Polyanskiy MAC tutorial 24



DT bound: Proof

• Codebook: random C1, . . . CM ∼ PX iid
• Feinstein decoder:

Ŵ = smallest j s.t. ıX;Y (Cj ;Y ) > γ

• j-th codeword’s probability of error:

P[error |W = j] ≤ P[ıX;Y (X;Y ) ≤ γ]︸ ︷︷ ︸
©a

+(j − 1)P[ıX;Y (X̄;Y ) > γ]︸ ︷︷ ︸
©b

In ©a : Cj too far from Y
In ©b : Ck with k < j is too close to Y

• Average over W :

P[error] ≤ P [ıX;Y (X;Y ) ≤ γ] +
M−1

2
P
[
ıX;Y (X̄;Y ) > γ

]
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DT bound: Proof

• Recap: for every γ there exists a code with

ε ≤ P [ıX;Y (X;Y ) ≤ γ] +
M−1

2
P
[
ıX;Y (X̄;Y ) > γ

]
.

• Key step: closed-form optimization of γ.
• Introduce X̄ ⊥⊥ Y : ıX;Y = log dPXY

dPX̄Y

• We have

PXY

[
dPXY
dPX̄Y

≤ eγ
]

+
M−1

2
PX̄Y

[
dPXY
dPX̄Y

> eγ
]

Bayesian dependence testing!
Optimum threshold: Ratio of priors ⇒ γ∗ = log M−1

2

• Change of measure argument:

P

[
dP

dQ
≤ τ

]
+ τQ

[
dP

dQ
> τ

]
= EP

[
exp

{
−
∣∣∣∣log

dP

dQ
− log τ

∣∣∣∣
+
}]

.
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FBL Converse bounds

• Take a random transformation A
PY |X−→ B

(think A = An, B = Bn, PY |X = PY n|Xn)
• Input distribution PX induces PY = PY |X ◦ PX

PXY = PXPY |X

• Fix code:
W

encoder−→ X → Y
decoder−→ Ŵ

W ∼ Unif [M ] and M = # of codewords
Input distribution PX associated to a code:

PX [·] , # of codewords ∈ (·)
M

.

• Goal: Upper bounds on logM in terms of ε , P[error]

As by-product: R∗(n, ε) . C −
√

V
nQ
−1(ε)
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Fano’s inequality

Theorem (Fano)

For any code
encoder decoder

PSfrag replacements

W

W1
W2

Ŵ

Ŵ1

Ŵ2

Y

Y1
Y2

X

X1
X2

PY |X

A
A1
B
B1
C
C1

with W ∼ Unif{1, . . . ,M}:

logM ≤ supPX I(X;Y ) + h(ε)

1− ε , ε = P[W 6= Ŵ ]

Implies weak converse:

R∗(n, ε) ≤ C

1− ε + o(1) .

Proof: ε-small =⇒ H(W |Ŵ )-small =⇒ I(X;Y ) ≈ H(W )= logM
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A (very long) proof of Fano via channel substitution

Consider two distributions on (W,X, Y, Ŵ ):

P : PWXY Ŵ = PW × PX|W × PY |X ×PŴ |Y
DAG: W → X → Y → Ŵ

Q : QWXY Ŵ = PW × PX|W × QY ×PŴ |Y
DAG: W → X Y → Ŵ

Under Q the channel is useless:

Q[W = Ŵ ] =

M∑

m=1

PW (m)QŴ (m) =
1

M

M∑

m=1

QŴ (m) =
1

M

Next step: data-processing for relative entropy D(·||·)
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Data-processing for D(·||·)

Transformation
PB|A

PA

Input distribution Output distribution

QA

PB

QB

(Random)

D(PA‖QA) ≥ D(PB‖QB)

Apply to transform: (W,X, Y, Ŵ ) 7→ 1{W 6= Ŵ}:

D(PWXY Ŵ ‖QWXY Ŵ ) ≥ d(P[W = Ŵ ] ‖Q[W = Ŵ ] )

= d(1− ε|| 1
M )

where d(x||y) = x log x
y + (1− x) log 1−x

1−y .
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A proof of Fano via channel substitution

So far:
D(PWXY Ŵ ‖QWXY Ŵ ) ≥ d(1− ε|| 1

M )

Lower-bound RHS:

d(1− ε‖ 1
M ) ≥ (1− ε) logM − h(ε)

Analyze LHS:

D(PWXY Ŵ ‖QWXY Ŵ ) = D(PXY ‖QXY )

= D(PXPY |X‖PXQY )

= D(PY |X‖QY |PX)

(Recall: D(PY |X‖QY |PX) = Ex∼PX
[D(PY |X=x‖QY )])
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A proof of Fano via channel substitution: last step

Putting it all together:

(1− ε) logM ≤ D(PY |X ||QY |PX) + h(ε) ∀QY ∀code

Two methods:
1 Compute supPX infQY and recall

inf
QY

D(PY |X‖QY |PX) = I(X;Y )

2 Take QY = P ∗Y = the caod (capacity achieving output dist.) and
recall

D(PY |X‖P ∗Y |PX) ≤ sup
X
I(X;Y ) ∀PX

Conclude:
(1− ε) logM ≤ sup

PX

I(X;Y ) + h(ε)

Important: Second method is particularly useful for FBL!
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Tightening: from D(·||·) to βα(·, ·)
Question: How about replacing D(·||·) with other divergences?

D(·||·) relative entropy
(KL divergence) weak converse

Dλ(·||·) Rényi divergence strong converse

βα(·, ·) Neyman-Pearson
ROC curve FBL bounds

Note: Using βα is aka meta-converse.

... and leads to R∗(n, ε) ≤ C −
√

V
nQ
−1(ε)
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General meta-converse principle

Steps:
• Select auxiliary channel QY |X (art)

E.g.: QY |X=x = center of a cluster of x
• Prove converse bound for channel QY |X

E.g.: Q[W = Ŵ ] . # of clusters
M

• Compute distance D(P‖Q) between two spaces

P : PWXY Ŵ = PW × PX|W × PY |X × PŴ |Y

vs.

Q : PWXY Ŵ = PW × PX|W × QY |X × PŴ |Y

• Apply data processing: D(PW,Ŵ ‖QW,Ŵ ) ≤ D(PX,Y ‖QX,Y )

• Key observation: This inequality connects P[error], Q[error] and
distance D(P‖|Q).
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FBL: summary

• All in all, these methods allow us to conclude:

R∗(n, ε) ≈ C −
√
V

n
Q−1(ε)

for a wide range of channels.
• Typically, V = Var[i(X;Y )|X] for cap.ach. distribution X.

• Example: The AWGN Channel

Z∼ N (0, σ2)
↓

X −→ ⊕ −→ Y

Codewords xn ∈ Rn satisfy power-constraint:
∑n

j=1 |xj |2 ≤ nP

C(P ) =
1

2
log(1 + P ), V (P ) =

log2 e

2

(
1− 1

(1 + P )2

)

• Curious property of Gaussian noise: V (P ) ≤ log2 e
2

Below for Gaussian MAC we focus on m.i./capacity. By FBL
there ∃ codes within O( 1√

n
) uniformly in P .
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Classical multiple-access IT
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IT vs networks view on MAC

• Core problem: many users, one channel

• Networking folks:

• ALOHA protocol (slotted) achieves:
∑

i

Ri ≈ 0.37C

• Open problem: what max fraction η∗ achievable?
State of the art [Tsybakov-Lihanov’87]: 0.476 ≤ η∗ ≤ 0.568
(collision resolution codes)

• IT: We want
∑

iRi � C !
• How? By exploiting physics of collision.
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2-user MAC: IT formalism

PSfrag replacements

W

W1

W2

Ŵ

Ŵ1

Ŵ2

Y

Y1
Y2
X

X1

X2

PY |X
A
A1
B
B1
C
C1

• 2-input channel: PY |X1,X2
(memoryless)

• Random messages W1 ∈ [2nR1 ],W2 ∈ [2nR2 ]
• Encoders: Xn

1 = f1(W1), Xn
2 = f2(W2)

• Joint decoder: (Ŵ1, Ŵ2) = g(Y )
• Joint probability of error:

P[W1 = Ŵ1,W2 = Ŵ2] ≥ 1− ε .

• FBL fundamental limit (region):

R∗(n, ε) = {(R1, R2) : ∃(2nR1 , 2nR2 , ε)-code}
• Asymptotics: [·] = closure

Cε =
[
lim inf
n→∞

R∗(n, ε)
]
, C =

⋂

ε>0

Cε
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2-user MAC: capacity region

Theorem (Ahlswede-Liao (capacity) + Dueck (Strong converse))

C = Cε =


co





⋃

PX1
,PX2

Penta(PX1 , PX2)








Penta(PX1 , PX2) ,



(R1, R2) :

R1 +R2 ≤ I(X1, X2;Y )
R1 ≤ I(X1;Y |X2)
R2 ≤ I(X2;Y |X1)





• co{·} – convex hull
• Fun fact: w/o syncronization C = [

⋃
Penta] but w/o co{·} !

• Not true with cost constraints. In that case need time-sharing:

C =
⋃

X1,X2,U



(R1, R2) :

R1 +R2 ≤ I(X1, X2;Y |U)
R1 ≤ I(X1;Y |X2, U)
R2 ≤ I(X2;Y |X1, U)



 .
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Capacity = Union of pentagons

Penta(PX1 , PX2) ,



(R1, R2) :

R1 +R2 ≤ I(X1, X2;Y )
R1 ≤ I(X1;Y |X2)
R2 ≤ I(X2;Y |X1)





R1

R2

I(X1;Y |X2)

I(X2;Y |X1)
I(X1, X2;Y )

Note: After taking
⋃
PX1

,PX2
and convex-hull, resulting region may be

curvilinear!
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MAC theorem: standard proof (outline)

Theorem

C = Cε =


co





⋃

PX1
,PX2

Penta(PX1 , PX2)








Here is a standard proof
• Weak-converse:

I sum-rate

R1 +R2 .
1

n
I(Xn

1 , X
n
2 ;Y n) ≤ 1

n

n∑

i=1

I(X1i, X2i;Yi) .

I genie gives Xn
1 to decoder

R2 .
1

n
I(Xn

2 ;Y n|Xn
1 ) ≤ 1

n

n∑

i=1

I(X2i;Yi|X1i)

I Hence (R1, R2) ∈ 1
n

∑
i Penta(PX1i

, PX2i
)
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MAC theorem: standard proof (outline)

Theorem

C = Cε =


co





⋃

PX1
,PX2

Penta(PX1 , PX2)








Here is a standard proof
• Achievability:

I Fix PX1
, PX2

.
I Generate codewords for user i from (PX1)⊗n iid
I Decode via joint-typicality
I Have (M1 − 1)(M2 − 1) possibilities with both Ŵ1, Ŵ2 wrong

(each w.p. ≤ 2−nI(X1,X2;Y ))
I Have Mi− 1 possibilities with Ŵi wrong (each w.p. ≤ 2−nI(Xi;Y |Xĩ))
I Hence, if (R1, R2) ∈ Penta(PX1 , PX2) all three types of errors are

small.
I Let us understand this more carefully...
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MAC achievability: details I

• Gen. M1 = 2nR1 codewords Ci
iid∼ (PX1)⊗n

• Gen. M2 = 2nR2 codewords Di
iid∼ (PX2)⊗n

• True message W1 = i0,W2 = j0.
• Decoder sees yn. How to decode?

• Why is this not the same as decoding single-user M1×M2-size code?

• Extra structure: (Ci0 , Dj) 6⊥⊥ (Ci0 , Dj0)
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MAC achievability: details II

• Decoder sees yn. How to decode?
• A good test for rejecting (M1 − 1)(M2 − 1) codewords in (P12):

(T12) i(ci, dj ; y
n) ≤ γ12 ⇒ remove (i, j) from consideration

• i(c, d; yn) , log
PY n|Xn1 ,X

n
2

(yn|c,d)

PY n (yn)

• Standard bound: ∀i 6= i0, j 6= j0:

P[i(Ci, Dj ;Y
n) > γ12] ≤ e−γ12

• Set γ12 = log(M1M2) + τ then test (T12) filters all (i, j) ∈ (P12)
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MAC achievability: details III

• Decoder sees yn. How to decode?
• A good test for rejecting (M2 − 1) codewords in (P2):

(T2) i(dj ; y
n|ci) ≤ γ2 ⇒ remove (i, j) from consideration

• i(d; yn|c) , log
PY n|Xn1 ,X

n
2

(yn|c,d)

PY n|Xn1
(yn|c)

• Standard bound: ∀j 6= j0:

P[i(Dj ;Y
n|Ci0) > γ2] ≤ e−γ2

• Set γ2 = log(M2) + τ then test (T2) filters all (i0, j) ∈ (P2)
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• Decoder sees yn. How to decode?
(T12) i(ci, dj ; y

n) ≤ n(R1 +R2) + τ ⇒ remove (i, j)

(T1) i(ci; y
n|dj) ≤ nR1 + τ ⇒ remove (i, j)

(T2) i(dj ; y
n|ci) ≤ nR2 + τ ⇒ remove (i, j)

• This achieves:

ε ≤ 3e−τ + P
[
{i(Xn

1 , X
n
2 ;Y n) ≤ n(R1 +R2) + τ} ∪

{i(Xn
1 ;Y n|Xn

2 ) ≤ nR1 + τ} ∪ {i(Xn
2 ;Y n|Xn

1 ) ≤ nR2 + τ}
]
.

• By CLT a (R1, R2) within 1√
n
of the boundary of Penta is

achievable.

• Typical decoding
I Use (T12) rule – this is like decoding single-user M1 ×M2-code

(LDPC+LDGM structure!)
I After applying it, most often get only one (true) message left (!)
I Unless R1 = I(X1;Y |X2) +O( 1√

n
).

I In this case, many (i, j)’s remain. But they are all in one column!
I Hence decode W2. Conditioned on X2 – decode M1-code.
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Example: Binary Adder Channel (BAC)

A

B
R1

R2

1

1

Y
R1 +R2 ≤ 3/2

Y = X1 +X2 Xi ∈ {0, 1}, Y ∈ {0, 1, 2}

• Maximal sum-rate:

Csum = max
A,B

I(A,B;Y ) = maxH(A+B) =
3

2
log 2

• Each user can send 1 bit/ch.use. But together 3
2 bit/ch.use. How?
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Example: Binary Adder Channel (BAC)

A

B
R1

R2

1

1

Y
R1 +R2 ≤ 3/2

• Take R1 = 1. Then X2 → Y sees channel:

0

1

0

1

2

1
2

1
2

1
2

1
2

= BEC(1/2)

• successive interference cancellation (SIC):

An

Bn

Y n Dec
BEC(1/2)

Ân

B̂n
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Example: Binary Adder Channel (BAC)

A

B
R1

R2

1

1

Y
R1 +R2 ≤ 3/2

Y = X1 +X2 Xi ∈ {0, 1}, Y ∈ {0, 1, 2}
• Analyzing FBL achievability we can show: (maximal sumrate)

R∗sum(n, ε) ≥ 3

2
−
√

1

4n
Q−1(ε) +O(log n) .

• Open problem: Prove R∗sum(n, ε) ≤ 3
2 +

√
1
nKε

• Conjecture: [Ajjanagadde-P.’15] for all 0 < α < 1

max
An⊥⊥Bn

Hα(An +Bn) = nHα(1
4 ,

1
2 ,

1
4)

where Hα(·) is Renyi entropy.
• If true implies Open problem. How?
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MAC: revisit weak-converse (genie)

P :

PSfrag replacements

W

W1

W2

Ŵ

Ŵ1

Ŵ2

Y

Y1
Y2
X

X1

X2

PY |X
A
A1
B
B1
C
C1

Q :

PSfrag replacements

W

W1

W2

Ŵ

Ŵ1

Ŵ2

Y

Y1
Y2
X

X1

X2

PY |X
A
A1
B
B1
C
C1

P[Ŵ1,2 = W1,2] = 1− ε Q[Ŵ1,2 = W1,2] = 1
M1

. . . apply data processing of D(·||·) . . .
⇓

d(1− ε‖ 1
M1

) ≤ D(PY |X1X2
‖QY |X1

|PX1PX2)

Optimizing QY |X1
:

logM1 ≤
I(X1;Y |X2) + h(ε)

1− ε
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PY |X
A
A1
B
B1
C
C1

P[Ŵ1,2 = W1,2] = 1− ε Q[Ŵ1,2 = W1,2] = 1
M1M2

. . . apply data processing of D(·||·) . . .
⇓

d(1− ε‖ 1
M1

) ≤ D(PY |X1X2
‖QY |PX1PX2)

Optimizing QY :

logM1M2 ≤
I(X1, X2;Y ) + h(ε)

1− ε
Together with previous: full (pentagon) weak converse
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MAC: towards strong-converse

P :

PSfrag replacements

W

W1

W2

Ŵ

Ŵ1

Ŵ2

Y

Y1
Y2
X

X1

X2

PY |X
A
A1
B
B1
C
C1

Q :

PSfrag replacements

W

W1

W2

Ŵ

Ŵ1

Ŵ2

Y

Y1
Y2
X

X1

X2

PY |X
A
A1
B
B1
C
C1

P[Ŵ1,2 = W1,2] = 1− ε Q[Ŵ1,2 = W1,2] = 1
M1M2

. . . use Renyi Dλ(·‖·) . . .
⇓

Dλ(PX1X2Y ‖PX1PX2QY ) ≥ dλ(1− ε‖ 1
M1M2

)

Selecting λ = 1 + 1√
n
yields (for BAC)

logM1,M2 ≤ sup
An⊥⊥Bn

Hαn(An +Bn) +K
√
n

with αn = 1− 1√
n
.
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Classical MAC: summary

• Trivially generalizes to K-user MAC:

Penta = {(R1, . . . , RK) :
∑

i∈S
Ri ≤ I(XS ;Y |XSc)∀S ⊂ [K]}

• Classic IT: Fix K let n→∞.
• Use joint probability of error:

P[W1 = Ŵ1, . . . ,WK = Ŵk] ≥ 1− ε .

• New FBL issue: for K = 100 need 2100 tests in achievability.

• What is new today?
I Many-user scaling [D. Guo et al]: K = µn, n→∞
I New probability of error [P.’17]: 1

K

∑
i P[Wi 6= Ŵi] ≤ ε

I Same-codebook coding [P.’17]: Xi ∈ C for all i.
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Gaussian MAC. Modulation

Let’s put on our engineering shoes.
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The classical model: K-user multiple-access channel

User 1
Tx

User 2
Tx

User K
Tx

Rx

X
1

Xk

Y (t) = X1(t) + · · ·+XK(t) + Z(t)

+
+

. . .

+

=

User 1

User K

Noise

Received

 output

• Users send coded waveforms Xj(t) Tech note: synchronized block coding

• Additive Gaussian noise Z(t)

• Base station’s job: estimate Xj from the knowledge of Y (t)
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How to avoid inter-user interference?

These are called orthogonal schemes
Key problem: resources divided among active and inactive (!) users

(or need costly resource ack/grant protocol)

in IoT most are inactive ⇒ huge waste of bandwidth
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Orthogonal and non-orthogonal multiple access (NOMA)

This “pie-slicing” philosophy comes from:
• Given: W Hz bandwidth and duration T sec:
• By XYZ Theorem: d.o.f. n = 2WT

XYZ ∈ { Kotelnikov, Nyquist, Shannon, Slepian, . . . }
• TDMA, FDMA, CDMA: just different bases in R2WT .

(Fine print: CDMA = Orthogonal CDMA here).

• Is there value in having K > n? (non-orthogonal signalling)
• Is it even possible to have K > n or even K � n?
• Silly: Take n = 1 and let user j send a bit via {0, 2j}.
• ... cheating: user K’s power is 22K larger than user 1’s.
• Challenge: users only allowed to send ±1, can we have K � n?
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Achieving capacity of K-user BAC with zero-error

Y =

K∑

j=1

Xj Xi ∈ {±1}

• Known: Csum(K) = H(Bin(K, 1/2)) ≈ 1
2 logK.

• IOW, for sending 1-bit (each) the frame-length n ≈ 2K
log2 K

� K.

How can K > n users signal in n dimensions simultaneously?

• Khachatrian-Martirossian: even with zero-error!
First, recall a particularly nice orthogonal basis:

(each user is modulating his row)
• K.-M. noticed you can add more rows!
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Khachatrian-Martirossian construction

How can K > n users signal in n dimensions simultaneously?

• Walsh-Hadamard basis:

• K.-M. signals:

• Key property: x 7→ xAm is injective on {±1}Km , Km = m
2 2m + 1

• Number of users at dimension n: K ≈ 1
2n log2 n (optimal!)
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~

• Want to show: v is decodable from vÃm for any v ∈ {±1}⊗Km and
v2Km−1+1 = 0.

• Equivalently: v ∈ {0, 1}⊗Km (just use v 7→ 1+v
2 )

• Let v = [x y z] and

[x y z]Ãm = [g h]⇒ g − h = [x y z]




0
2Am−1

2I2m−1




• z1 = 0, so by adding (g − h)1 to (g − h)` we get:

(*) 2z` = (g − h)1 + (g − h)` − 2y · v` ` = 2, . . . , 2m−1

where v` is sum of 1-st and `-th column of Am−1

• Key: v`’s entries are {0, 2}. Take mod 4 of (∗) and decode z`’s !
• Subtracting z`’s we get system:

[x y]

(
Am−1 Am−1

Am−1 −Am−1

)
= [g′ h′] ⇒ xAm−1 =

g′ + h′

2
⇒ induct
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Reflections

• When user inputs are constrained (to ±1), can have K � n

• Total information grows with K: H(X1 + · · ·+XK) ∼ 1
2 logK.

(This is similar to 1
2 log(1 +KP ) in GMAC.)

• Lots of smart ideas in MAC codes.

• Information theory structures it all into:

C =
⋃

X1,...,XK ,U

{(R1, . . . , RK) : RS ≤ I(XS ;Y |XSc , U)}

• Similar to how all the smarts (Reed-Muller, BCH, LDPC, Polar, ...)
are hidden behind

C = max
X

I(X;Y )
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2-user Gaussian MAC

Y = X1 +X2 + Z

Z
iid∼ N (0, 1)

E[(X1)2] ≤ P1,E[(X2)2] ≤ P2

X1

X2

Y

Z

• Evaluating capacity region:

R1 +R2 ≤ I(X1, X2;Y ) ≤ 1

2
log(1 + P1 + P2)

Ri ≤ I(Xi;Y |Xî) = I(Xi;Xi + Z) ≤ 1

2
log(1 + Pi)

R1

R2
1
2
log(1 + P1 + P2)

1
2
log(1 + P2)

1
2
log(1 + P1)
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2-GMAC rates for TDMA
Y = X1 +X2 + Z

Z
iid∼ N (0, 1)

E[(X1)2] ≤ P1,E[(X2)2] ≤ P2

R1

R2
1
2
log(1 + P1 + P2)

1
2
log(1 + P2)

1
2
log(1 + P1)

• Here is a TDMA:
I Partition block: n = λn+ (1− λ)n

I User 1 sends in λn: R1 = λ
2 log(1 + P1)

I User 2 sends in λ̄n: R2 = λ̄
2 log(1 + P2)

R1

R2
1
2
log(1 + P1 + P2)

• Note: low-complexity decoder – two users are decoded separately.
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2-GMAC rates for FDMA
Y = X1 +X2 + Z

Z
iid∼ N (0, 1)

E[(X1)2] ≤ P1,E[(X2)2] ≤ P2

R1

R2
1
2
log(1 + P1 + P2)

1
2
log(1 + P2)

1
2
log(1 + P1)• Here is a FDMA:

I Use Fourier transform to change n=time to n=frequency.
I Partition block: n = λn+ (1− λ)n

I User 1 sends in λn: R1 = λ
2 log(1 + P1

λ )

I User 2 sends in λ̄n: R2 = λ̄
2 log(1 + P2

λ̄
)

R1

R2
1
2
log(1 + P1 + P2)

b

λ∗ = P1
P1+P2

achieves optimal
sumrate
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2-GMAC rates for TIN
Y = X1 +X2 + Z

Z
iid∼ N (0, 1)

E[(X1)2] ≤ P1,E[(X2)2] ≤ P2

R1

R2
1
2
log(1 + P1 + P2)

1
2
log(1 + P2)

1
2
log(1 + P1)• Treat-interference-as-noise (TIN):

I Each user treats the other as noise (single-user decoders)
I Random coding ensures noise is Gaussian.
I Rates: R1 = 1

2 log(1 + P1

1+P2
), R2 = 1

2 log(1 + P2

1+P1
)

R1

R2
1
2
log(1 + P1 + P2)

b1
2
log(1 + P2

1+P1
)

1
2
log(1 + P1

1+P2
)

• TIN point can be inside/outside TDMA.
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TIN + SIC
Y = X1 +X2 + Z

Z
iid∼ N (0, 1)

E[(X1)2] ≤ P1,E[(X2)2] ≤ P2

R1

R2
1
2
log(1 + P1 + P2)

b

b

1
2
log(1 + P2

1+P1
)

1
2
log(1 + P1

1+P2
)• Consider a corner point:

R1 =
1

2
log(1 +

P1

1 + P2
), R2 =

1

2
log(1 + P2) .

• User 1 can be decoded by TIN. But then can subtract it out!

X1

X2

Y

Z

Dec1 X̂1

X̂2Dec2

Enc1

Enc2

• So far: achieved three optimal points via SU-decoding. Any more?
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Rate-splitting
Y = X1 +X2 + Z

Z
iid∼ N (0, 1)

E[(X1)2] ≤ P1,E[(X2)2] ≤ P2

R1

R2
1
2
log(1 + P1 + P2)

b
b
b

• Split user 1 into two virtual users 1A and 1B:

R1 = R1A +R1B, P1 = P1A + P1B

• A funny order of decoding:
I Decode X1A via TIN: R1A = 1

2 log(1 + P1A

1+P1B+P2
)

I Subtract X1A, decode X2: R2 = 1
2 log(1 + P2

1+P1B
)

I Subtract X2, decode X1B : R1B = 1
2 log(1 + P1B)

• Simple check:

R1A +R1B +R2 =
1

2
log(1 + P1 + P2) sumrate optimal

by varying P1A + P1B = P1 can achieve any point!!
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K-user GMAC

[t]

User 1
Tx

User 2
Tx

User K
Tx

Rx

X
1

Xk

Y (t) = X1(t) + · · ·+XK(t) + Z(t)

+
+

. . .

+

=

User 1

User K

Noise

Received

 output

• Assume equal-power setting Pi = P . Capacity region (sumrate):

K∑

i=1

Ri ≤
1

2
log(1 +KP )
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K-user GMAC

[t]

User 1
Tx

User 2
Tx

User K
Tx

Rx

X
1

Xk

Y (t) = X1(t) + · · ·+XK(t) + Z(t)

+
+

. . .

+

=

User 1

User K

Noise

Received

 output

• single-user decoders achieve:
I FDMA optimal at symmetric point: Ri = 1

2K log(1 +KP )
I TIN+SIC achieves all vertices.
I Rate-Splitting all points of optimal sumrate.

• Is that it? Let us see...
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K-user GMAC: Reflections

• So total capacity:

Csum =
1

2
log2(1 +KP ) bit/rdof

growing to ∞ as K →∞.

• But at the same time, per-user rate:

Csym =
1

2K
log2(1 +KP )→ 0 .

• The crucial performance metric: HRH energy-per-bit
Eb
N0

,
total energy spent
2× total # bits

=
nKP

2nCsum

• As K →∞:
Eb
N0

=
KP

log(1 +KP )
→∞ !!!

• Capacity increases, but each user works harder and moves fewer bits!
• Correct scaling: Ptot = KP should be fixed!
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Spectral efficiency vs. Eb
N0

• Studying this tradeoff is the favorite pastime of ComSoc

• Sp.eff. ρ , total # of data bits
total real d.o.f.

• We have:

ρ =
1

2
log(1 +KP ),

Eb
N0

=
KP

log(1 +KP )

• regardless of K : (and any sumrate-optimal arch)

Eb
N0

=
22ρ − 1

2ρ
≥ −1.59 dB

• Compare to TIN: ρ = K
2 log2(1 + P

1+(K−1)P )
K→∞−→ 1

2 ln 2
Ptot

1+Ptot

ρ =
1

2 ln 2

Ptot
1 + Ptot

,
Eb
N0

= (1 + Ptot) ln 2

• IMPORTANT: ρ ≤ 1
2 ln 2 = 0.72 bit/rdof

• IMPORTANT: Essentially optimal for low sp.eff.

Yury Polyanskiy MAC tutorial 69



Spectral efficiency vs. Eb
N0

• Studying this tradeoff is the favorite pastime of ComSoc

• Sp.eff. ρ , total # of data bits
total real d.o.f.

• We have:

ρ =
1

2
log(1 +KP ),

Eb
N0

=
KP

log(1 +KP )

• regardless of K : (and any sumrate-optimal arch)

Eb
N0

=
22ρ − 1

2ρ
≥ −1.59 dB

−2 −1 0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

Eb/No, dB

S
p
e
c
tr

a
l 
e
ff
ic

ie
n
c
y
, 
b
it
/r

d
o
f

Spectral efficiency vs Eb/No (classic Shannon IT)

 

 

Optimal

TIN

CDMA−MF: β=0.5, 1, 3

−2 −1 0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

Eb/No, dB

S
p
e
c
tr

a
l 
e
ff
ic

ie
n
c
y
, 
b
it
/r

d
o
f

Spectral efficiency vs Eb/No (classic Shannon IT)

 

 

Optimal

TIN

CDMA−MF: β=0.5, 1, 3

−2 −1 0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

Eb/No, dB

S
p
e
c
tr

a
l 
e
ff
ic

ie
n
c
y
, 
b
it
/r

d
o
f

Spectral efficiency vs Eb/No (classic Shannon IT)

 

 

Optimal

TIN

CDMA−MF: β=0.5, 1, 3

−2 −1 0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

Eb/No, dB

S
p
e
c
tr

a
l 
e
ff
ic

ie
n
c
y
, 
b
it
/r

d
o
f

Spectral efficiency vs Eb/No (classic Shannon IT)

 

 

Optimal

TIN

CDMA−MF: β=0.5, 1, 3

−2 −1 0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

Eb/No, dB

S
p
e
c
tr

a
l 
e
ff
ic

ie
n
c
y
, 
b
it
/r

d
o
f

Spectral efficiency vs Eb/No (classic Shannon IT)

 

 

Optimal

TIN

CDMA−MF: β=0.5, 1, 3

−2 −1 0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

Eb/No, dB

S
p
e
c
tr

a
l 
e
ff
ic

ie
n
c
y
, 
b
it
/r

d
o
f

Spectral efficiency vs Eb/No (classic Shannon IT)

 

 

Optimal

TIN

CDMA−MF: β=0.5, 1, 3

−2 −1 0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

Eb/No, dB

S
p
e
c
tr

a
l 
e
ff
ic

ie
n
c
y
, 
b
it
/r

d
o
f

Spectral efficiency vs Eb/No (classic Shannon IT)

 

 

Optimal

TIN

CDMA−MF: β=0.5, 1, 3

−2 −1 0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

Eb/No, dB

S
p
e
c
tr

a
l 
e
ff
ic

ie
n
c
y
, 
b
it
/r

d
o
f

Spectral efficiency vs Eb/No (classic Shannon IT)

• Compare to TIN: ρ = K
2 log2(1 + P
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K→∞−→ 1

2 ln 2
Ptot

1+Ptot

ρ =
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2 ln 2

Ptot
1 + Ptot

,
Eb
N0

= (1 + Ptot) ln 2

• IMPORTANT: ρ ≤ 1
2 ln 2 = 0.72 bit/rdof

• IMPORTANT: Essentially optimal for low sp.eff.
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2 ln 2 = 0.72 bit/rdof
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Modulation

• Given that TIN is not bad for low sp.eff., let us try to achieve it.
• Problem: Per-user rate is ρ

K is very small for a large K.

• Solution: each user modulates some N -signature si ∈ RN

 ...

n

N N N

• Think of N -blocks as new super-symbols. Effective channel:

Y N = s1B1 + s2B2 + · · · sKBk + ZN , ‖si‖ = 1

I Set β = K
N

I new power-constraint: E[B2
i ] ≤ NP = Ptot

β .
I new rate: ρN

K = ρ
β in bits / one B-symbol.

I with proper choice should have ρ
β ∼ 1 as ComSoc likes.
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 ...

n

N N N

• N -blocks are new super-symbols. Effective channel:

Y N = s1B1 + s2B2 + · · · sKBk + ZN , ‖si‖ = 1

I Set β = K
N

I new power-constraint: E[B2
i ] ≤ NP = Ptot

β .
• Side observation:

I If si’s are chosen orthogonally and K = N , this is FDMA (hence
optimal).

I But incurs FBL loss – important when K ∼ n. But ignore for now.
I So why not do so?
I Many reasons: E.g. K may vary, but N should be constant.
I Requires central distribution of signatures among ACTIVE users.
I Also random-like si’s would help TIN decoders.

• Idea 1: Decode via matched-filter + SU decoders:

B̂i = 〈si, Y N 〉 = Bi + Z̃i

• Idea 2: Select si randomly. (attractive sys. arch.)
• When si’s are random and N large:

|〈si, sj〉| ≈
1√
N

w.h.p.

• So SU-decoder sees effective SNR = NP
1+(K−1)P = Ptot

1+Ptot
1
β
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n

N N N

• N -blocks are new super-symbols. Effective channel:

Y N = s1B1 + s2B2 + · · · sKBk + ZN , ‖si‖ = 1

I Set β = K
N

I new power-constraint: E[B2
i ] ≤ NP = Ptot

β .
I random (non-orthogonal) signatures
I matched-filter + SU-decoder

• End result:

ρCDMA =
β

2
log2(1 +

Ptot
1 + Ptot

1

β
)

Eb
N0

=
Ptot

2ρCDMA

I As β →∞ we approach TIN.
I So classical CDMA folks (Viterbi...) were only trying to achieve TIN.
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I As β →∞ we approach TIN.
I So classical CDMA folks (Viterbi...) were only trying to achieve TIN.
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CDMA+MUD vs OFDM

• Set β = K
N

• new power-constraint: E[B2
i ] ≤ NP = Ptot

β .
• random (non-orthogonal) signatures
• matched-filter + SU-decoder

ρCDMA =
β

2
log2(1 +

Ptot
1 + Ptot

1

β
)

Eb
N0

=
Ptot

2ρCDMA

• multi-user detectors (MUD) improve performance of random-CDMA.
• E.g. MMSE detector yields (Tse-Hanly/Verdú-Shamai formula)

ρMMSE =
β

2
log2(1 + P1 −

1

4
F), P1 =

Ptot
β

where F = (
√
P1(1 +

√
β)2 + 1−

√
P1(1−√β)2 + 1)2

• Allows to beat TIN’s ρ ≤ 0.72 bit/rdof bottleneck.
• Still, industry converged to OFDM : spectrum is too precious.
• IoT: centralized orthogonalization impossible! Comeback of MUD?
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• Allows to beat TIN’s ρ ≤ 0.72 bit/rdof bottleneck.
• Still, industry converged to OFDM : spectrum is too precious.
• IoT: centralized orthogonalization impossible! Comeback of MUD?
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New problems: many users and random-access
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The classical model: K-user multiple-access channel

User 1
Tx

User 2
Tx

User K
Tx

Rx

X
1

Xk

Y (t) = X1(t) + · · ·+XK(t) + Z(t)

+
+

. . .

+

=

User 1

User K

Noise

Received

 output

• Before: Fix K, let n→∞. Few users. Large payloads.
• Now: Huge K. Small payload.

• Random-access: User activity – random, uncoordinated
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On number of sensors (user density)

• Key metric: µ in users/rdof

µ =
# of active users per frame

size of frame
• Ktot sensors sending with period Tper (sec) in band B (Hz)

µ =
Ktot

2BTper
• Futuristic example:

I City of 106.
I Each house has 102 devices.
I Each dev sends every 10 min, Tper = 600 s.
I sub-GHz bandwidth is scarce: ISM B = 20 MHz.
I µ ≈ 4 · 10−3.

• Another point of view:
I Traditional comm: focus on sp.eff. ρ vs Eb

N0
. Why?

I ρB
K = per-user speed?

I or is it ρB

speed = number of happy users?
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New twists compared to classic MAC

Problem 1 “massive”: K and n are comparable.

Relevant asymptotics: K,n→∞ with K
n = µ.

Problem 2 “user-centric” probability of error

Pe , 1
K

∑
j P[X̂j 6= Xj ]

Problem 3 “random-access”

indistiguishable users (same-codebook), non-asymptotics.
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Fundamental limits: for K-user MAC with K ∼ n

Recap: MAC setting and performance metrics

• Perfectly synchronized K-user Gaussian MAC with blocklength n

• Each user transmits log2M ≈ 102 bits.

• Figures of merit: energy-per-bit and user density

Eb
N0

, E[‖Xn‖2]
2 log2M

µ , K
n

Problem 1: “massive” number of users

• Number of users K = µn scales linearly with blocklength!
• Q: Why scale linearly? A: # of devices waking up � time.
• Q: Ok, but what µ should we look at?
A: µ ∼ 10−3.
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Fundamental limits: for K-user MAC with K ∼ n

Recap: MAC setting and performance metrics

• Perfectly synchronized K-user Gaussian MAC with blocklength n
• Each user transmits log2M ≈ 102 bits.
• Figures of merit: energy-per-bit and user density

Eb
N0

, E[‖Xn‖2]
2 log2M

µ , K
n

Problem 1: “massive” number of users
• Number of users K = µn scales linearly with blocklength!
• Q: Why scale linearly? A: # of devices waking up � time.
• Q: Ok, but what µ should we look at?
A: µ ∼ 10−3. Here is why:

I City of 106.
I Each house has 102 devices.
I Each dev sends 1-10 times/hour.
I sub-GHz bandwidth is scarce, unlikely to ever get > 20 MHz.
I ⇒ K

n ≈ 10−3 . . . 10−2. This relation is unlikely to change soon.
Yury Polyanskiy MAC tutorial 78



Fundamental limits: for K-user MAC with K ∼ n

Recap: MAC setting and performance metrics

• Perfectly synchronized K-user Gaussian MAC with blocklength n
• Each user transmits log2M bits.
• Figures of merit: energy-per-bit and user density

Eb
N0

, E[‖Xn‖2]
2 log2M

µ , K
n

Problem 1: “massive” number of users
• Number of users K = µn scales linearly with blocklength!
• [Chen-Chen-Guo’17]: Fix per-user power to P (i.e. codeword
‖c‖22 ≤ nP ), then

logM∗user(K = µn, n, P ) ≈ 1

2µ
log(1 + µnP )

• Note: this corresponds to Eb
N0
→∞.

• Our work: What about finite Eb
N0

?
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New twists compared to classic MAC

Problem 1 “massive”: K and n are comparable

Relevant asymptotics: K,n→∞ with K
n = µ.

Problem 2 “user-centric” probability of error

Pe , 1
K

∑
j P[X̂j 6= Xj ]

Problem 3 “random-access”

indistiguishable users (same-codebook), non-asymptotics.
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Fundamental limits: for K-user MAC with K ∼ n

Recap: MAC setting and performance metrics

• Perfectly synchronized K-user Gaussian MAC with blocklength n
• Each user transmits log2M bits.
• Figures of merit: energy-per-bit and user density

Eb
N0

, E[‖Xn‖2]
2 log2M

µ , K
n

• Regime: K = µn, n→∞.
Problem 2: “user-centric” prob. of error
• For finite Eb

N0
we have ( Why? See next...)

P[W1 = Ŵ1, . . .WK = ŴK ]→ 0 as n→∞
• ⇒ NEED to switch to per-user Pe, PUPE :

Pe =
1

K

K∑

i=1

P[Wi 6= Ŵi]
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Eb/N0 →∞ for classical probability of error

Theorem
Suppose K users send one bit each with finite energy E over the GMAC
(with arbitrary n): Y n =

∑K
i=1Xi + Zn. Then we have

P[X1 = X̂1, . . . , XK = X̂K ] ≤ E
log e

2 + log 2

logK
.

And, thus, classical probability of error → 1 as K →∞.

Proof:
• WLOG can assume: Y =

∑
ciWi + Z, where ci ∈ Rn and

Wi ∼ Ber(1/2).
• Genie: Reveal vector of Wi’s to within Hamming-distance 1.
• New problem: See Y = cU + Z, U ∼ [K]. Goal: find U .

• Fano + Capacity calculation:

P[U = Û ] logK − log 2 ≤ I(cU ;Y )

≤ n

2
log

(
1 +
E
n

)
≤ log e

2
E
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Eb/N0 →∞ for classical probability of error

Theorem (AWGN)

Suppose K users send one bit each with finite energy E over the GMAC
(with arbitrary n): Y n =

∑K
i=1Xi + Zn. Then we have

P[X1 = X̂1, . . . , XK = X̂K ] ≤ E
log e

2 + log 2

logK
.

Same proof:

Theorem (BSC)

Let G be a K × n generating matrix with ≤ E ones per row. Then over
BSC(δ) and all n:

1− P[block error] ≤ d(δ‖δ̄)E + log 2

logK

Puzzle: Genie + Fano method fails for BEC! (Proof by induction works.)
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K-user GMAC under PUPE: surprise

• Per-user probability of error as

Pe =
1

K

K∑

i=1

P[Wi 6= Ŵi] .

• Let’s forget about K = µn and consider ...
• Classical regime: K-fixed, power P fixed, n→∞. Symmetric
capacity

Csym(K) =
1

2K
log(1 +KP ) .

• But no strong converse (!)

Csym,ε(K) > Csym(K − 1) ∀ε & 1 + logeK

K

• Lesson: When PUPE above logK
K , far from usual GMAC+JPE.
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K-user GMAC under PUPE: no strong converse

• Let Csym,ε(K) be the max achievable symmetric rate (K-fixed,
n→∞) under PUPE

1

K

K∑

i=1

P[Wi 6= Ŵi] ≤ ε .

Theorem (P.-Telatar’16)

We have: Csym,ε(K, ε) =

{
1

2K log(1 +KP ), ε < 1/K

≥ 1
2(K−1) log(1 + (K − 1)P ), ε & 1+logeK

K

• Note that sequence: 1
2K log(1 +KP ) is monotonically decreasing.

• First part: by union bound PUPE ≤ ε implies JPE ≤ Kε +
strong-converse for GMAC.

• Second part: Choose codebooks for symmetric-rate point of
(K − 1)-GMAC

• Each user sends 0 w.p. ε. Then w.p. 1− (1− ε)K only (K − 1) are
active.
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P[Wi 6= Ŵi] ≤ ε .

Theorem (P.-Telatar’16)

We have: Csym,ε(K, ε) =

{
1

2K log(1 +KP ), ε < 1/K

≥ 1
2(K−1) log(1 + (K − 1)P ), ε & 1+logeK

K

• Note that sequence: 1
2K log(1 +KP ) is monotonically decreasing.

• First part: by union bound PUPE ≤ ε implies JPE ≤ Kε +
strong-converse for GMAC.

• Second part: Choose codebooks for symmetric-rate point of
(K − 1)-GMAC

• Each user sends 0 w.p. ε. Then w.p. 1− (1− ε)K only (K − 1) are
active.
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New twists compared to classic MAC

Problem 1 “massive”: K and n are comparable

Relevant asymptotics: K,n→∞ with K
n = µ.

Problem 2 “user-centric” probability of error

Pe , 1
K

∑
j P[X̂j 6= Xj ]

Problem 3 “random-access”

indistiguishable users (same-codebook), non-asymptotics.
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Fundamental limits: for K-user MAC with K ∼ n

Recap: MAC setting and performance metrics

• Perfectly synchronized K-user Gaussian MAC with blocklength n
• Each user transmits log2M bits.
• Figures of merit: energy-per-bit and user density

Eb
N0

, E[‖Xn‖2]
2 log2M

µ , K
n

• Regime: K = µn, n→∞.
• PUPE definition: Pe , 1

K

∑K
j=1 P[Xj 6= X̂j ].

So what are the results?

• IoT regime: K = µn, nP = const, n→∞.
• Main result 1: Asymptotic tradeoff µ∗(ε,M, EbN0

) satisfies

µconv ≤ µ∗ ≤ µach
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User density vs. Energy-per-bit: best bounds
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User density vs. Energy-per-bit: CDMA (w/o MUD)
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K-user GMAC with a per-user Pe

• Each user transmits log2M bits.
• Figures of merit: energy-per-bit and user density

Eb
N0

, E[‖Xn‖2]
2 log2M

µ , K
n

• K = µn, E , nP = const, n→∞.
• Main result 1: Asymptotic tradeoff µ∗(ε,M, EbN0

) satisfies

µconv ≤ µ∗ ≤ µach

• Converse 1 (Fano): (1− ε)µ logM ≤ 1
2 log(1 +KaP ) + µh(ε)

• Converse 2 (PPV’11): low Eb
N0

requires (!) logM � 1

logeM .
E

2
−
√
EQ−1(ε)

[P.-Poor-Verdú’11]

10
0
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1
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2
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3
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4

10
5
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6

−2

−1

0

1

2
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7

8

Information bits, k

E
b

/N
o
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d

B

Achievability (non−feedback)

Converse (non−feedback)

Full feedback (optimal)
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Problem 3: Information theory of random-access
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Prior work on MAC/random-access

It’s a mess...

• Channel model: collision vs. additive
• Noise model: noiseless, stochastic or worst-case
• Coding with or without feedback (as in CSMA)
• Probability of error: zero, vanishing or fixed > 0.
• Probability of error: per-user vs all-users
• User activity: always-on vs sporadic
• finite blocklength vs n→∞
• Various asymptotics: K = const, n→∞ vs both K,n→∞
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Classification by user activity

MAC

Identifiable users

individual codebooks one (same) codebook

Non-identifiable users
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Sample of prior work

MAC

Identifiable users

individual codebooks one (same) codebook

Non-identifiable users

All active

• Classical IT
[Liao’72],[Ahlswede’73]

• Orthogonal schemes TDMA/FDMA
• Rate splitting [Rimoldi-Urbanke’99]

• Finite blocklength [MolavianJazi-Laneman’14-16]

• Many-user [Chen-Guo’14]
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Sample of prior work

MAC

Identifiable users

individual codebooks one (same) codebook

Non-identifiable users

All active Some active

Active set 
known

Active set 
unknown

• Non-orthogonal CDMA, MUD
• Randomly-spread CDMA

[Tse-Hanly’99], [Verdú-Shamai’99]

• [Mathys’90]

• LDS, SCMA

• Many-access [Chen-Chen-Guo’17]

• Blind-detection for CDMA
• [BarDavid-Plotnik-Rom’93]

• conflict-avoiding codes
[Bassalygo-Pinsker’83], B.Tsybakov
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Sample of prior work

MAC

Identifiable users

individual codebooks one (same) codebook

Non-identifiable users

• ALOHA [Abramson’70]

• [Massey-Mathys’85]

• Collision-resolution protocols
[Capetanakis’79]

• Superimposed codes
[Ericson-Gyorfi’88]

[Furedi-Ruszinkó’99]

• Br-codes [Dyachkov-Rykov’81]

• Coded Slotted ALOHA
[Casini et al’07],[Liva’11]

• Compressed sensing
[Jin-Kim-Rao’11]
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Key definition: random-access code

+
+

. . .

+

=

User 1

User K

Noise

Received

 output

Definition (P.’17)

f : [M ]→ Rn is a random-access code for Ka users if ∃ list-Ka decoder
g s.t.

P[Wj 6∈ g(f(W1) + · · ·+ f(WKa) + Z)] ≤ ε ∀j ∈ [Ka]

where Wi
iid∼ Unif[M ].

For ε = 0 this was studied:
• Noiseless channels: Br-codes [Dyackhov-Rykov’81]

• Worst-case noise: superimposed codes [Ericson-Gyorfi’88, Furedi-Ruszinkó’99]
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Key definition: random-access code

+
+

. . .

+

=

User 1

User K

Noise

Received

 output

Definition (P.’17)

f : [M ]→ Rn is a random-access code for Ka users if ∃ list-Ka decoder
g s.t.

P[Wj 6∈ g(f(W1) + · · ·+ f(WKa) + Z)] ≤ ε ∀j ∈ [Ka]

where Wi
iid∼ Unif[M ].

For ε > 0 this is:
• Just compressed sensing: Y = Xβ + Z, X is Ka-out-of-M sparse.
• ⇒ studied by many, but not w.r.t. Eb

N0
and not with M = 2Θ(n).
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Same-codebook codes = compressed sensing

• random-access = all users share same codebook
• ... obviously decoding is upto permutation of users
• New problems: capacity/error-exponent/zero-error capacity
• Equivalent to compressed-sensing [Jin-Kim-Rao’11]

• Let same-codebook (column) vectors be c1, . . . cj .

X =
(
c1 | · · · | cM

)

• Let β ∈ {0, 1}M with βj = 1 if codeword j was transmitted
• Then the problem is:

Y = Xβ + Z, Goal: E[‖β − β̂(Y )‖]→ min

(linear regression with sparsity ‖β‖0 = Ka aka comp.sensing).
• The famous n ∼ 2Ka logeM is just TIN :

logeM ≈
n

2
loge(1 +

P

1 + (Ka − 1)P
) ≈ n

2Ka

So all the L1 (LASSO) frenzy is just to achieve TIN (hehe...)
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Key definition: random-access code

+
+

. . .

+

=

User 1

User K

Noise

Received

 output

Definition (P.’17)

f : [M ]→ Rn is a random-access code for Ka users if ∃ list-Ka decoder
g s.t.

P[Wj 6∈ g(f(W1) + · · ·+ f(WKa) + Z)] ≤ ε ∀j ∈ [Ka]

where Wi
iid∼ Unif[M ].

This definition is answer to many prayers, but . . .
Bad news: Asymptotics of Ka = µn, n→∞ is nonsense.
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Prototypical random-access code: ALOHA

Slotted ALOHA protocol (shaded slots indicate collision)

A

B

C

D

E

F

G

H

• n-frame is partitioned into L = n
n1

subframes of length n1

• Each of Ka users places his n1-codeword into a random subframe.
• Per-user error: Pe ≈ P[Bino(Ka − 1, 1

L) > 0] ≈ Ka
L e
−Ka

L
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Main result 2: random-coding bound

Remark: For classical regime Ka-fixed, n→∞ and ε→ 0

Crandom−access(Ka) =
1

2Ka
log(1 +KaP ) .
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Random-coding achievability bound

• Generate M codewords: ci ∼ N (0, P )⊗n.
• WLOG, users send c1, c2, . . . , cKa .
• Decoder sees

Y = c1 + · · ·+ cKa + Z

• Define sum-codewords c(S) ,
∑

i∈S ci
• ML-decoder (not optimal!)

Ŝ = arg min
S
‖c(S)− Y ‖ .

• Error-analysis:

Pe ≤
Ka∑

t=1

t

Ka
P[t–misguessed]

P[t–misguessed] ≤ P


 ⋃
S∈(Kat )

⋃
S′∈(M−Kat )

‖c(S)− c(S′) + Z‖ ≤ ‖Z‖




Analysis I:
• Condition on Z, c1, . . . , cKa

• Use Chernoff + Gallager ρ-trick for P[∪S′ · · · |cKa
1 , Z]

• Use another Gallager ρ-trick for P[∪S · · · |Z]

• Finally take expectation over Z

Analysis II:
• Define information density appropriately
• Use Feinstein’s trick to bound

P[∪S ∪S′ · · · ] ≤ P[imin(XKa
1 ;Y ) < γ] +

(
Ka

t

)(
M
t

)
e−γ

imin = minS it(c(S);Y |c(Sc))
• imin ≈ max of Gaussian process indexed by t-subsets of [Ka]

Classical IT: term S goes → 0 if I(XS ;Y |XSc) >
∑

i∈S Ri
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Numerical evaluation
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NOMA: random−coding achievability

Lower bound

For Ka . 50 dominant term t ≤ 3
For Ka & 150 dominant term t = Ka
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Fundamental limits vs. ALOHA
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Fundamental limits vs. TIN (aka CDMA w/o MUD)
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Fundamental limits vs. Coded Slotted ALOHA
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ALOHA

NOMA: random−coding achievability

Lower bound

Coded ALOHA (irreg., rep. rate = 3.6)
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. . . and randomly-spread CDMA w/ optimal MUD
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NOMA: random−coding achievability

Lower bound

Coded ALOHA (irreg., rep. rate = 3.6)
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Random CDMA, BPSK, optimal MUD; K

a
/N=1

Yury Polyanskiy MAC tutorial 107



New twists compared to classic MAC

Problem 1 “massive”: K and n are comparable

Relevant asymptotics: K,n→∞ with K
n = µ.

Problem 2 “user-centric” probability of error

Pe , 1
K

∑
j P[X̂j 6= Xj ]

Problem 3 “random-access”

indistiguishable users (same-codebook), non-asymptotics.
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Low-complexity random-access over GMAC
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Massive Connectivity

Key challenge:

Providing multiple-access to massive number of
UNCOORDINATED

and infrequently communicating devices
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Massive Connectivity

Key challenge:

Providing multiple-access to massive number of
UNCOORDINATED

and infrequently communicating devices

Typical scenario:
• Huge # of users Ktot ≈ 106 − 107

• Still large # of active users Ka ≈ 1− 500

• Small data payload, e.g. k = 100 bits
• Blocklength n ∼ 104

• k
n � 1, but system spectral efficiency ρ = Ka·k

n ∼ 1
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Massive Connectivity

Key challenge:

Providing multiple-access to massive number of
UNCOORDINATED

and infrequently communicating devices

Typical scenario:
• Huge # of users Ktot ≈ 106 − 107

• Still large # of active users Ka ≈ 1− 500

• Small data payload, e.g. k = 100 bits
• Blocklength n ∼ 104

• k
n � 1, but system spectral efficiency ρ = Ka·k

n ∼ 1

The goal is to communicate with the smallest possible energy-per-bit
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Simple scheme I: Treat interference as noise (TIN)

Theorem (DT-TIN bound)

There exists C ⊂ B(0,
√
nP ) of size M such that

P[X1 6∈ {top-Ka closest c/w to Y }] . E
[
e−|i(X;X+Z)−logM |+

]

where Y = X1 + · · ·+XKa + Z, Xi – uniform on C, X ∼ N (0, P )⊗n

and Z ∼ N (0, 1)⊗n.

Remarks:
• Decoder searches for top-Ka closest codewords
• Achieves about logM ≈ nCTIN (P )−

√
nVTIN (P )Q−1(ε)

CTIN (P ) = 1
2 log

(
1 + P

1+(Ka−1)P

)
, VTIN (P ) = P log2 e

1+KaP
.

• Spectral efficiency as Ka →∞ is bounded by log2 e
2 ≈ 0.72 bit.
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Simple scheme I: Treat interference as noise (TIN)
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Simple scheme II: T -fold ALOHA

Slotted ALOHA protocol (shaded slots indicate collision)

A

B

C

D

E

F

G

H

• Each user places his n1-codeword into one of L subframes.
• Assume any T -fold collision is resolvable

• Per-user error: Pe ≈ P[Bino(Ka − 1, 1
L) > T ] ≈

(
Ka
L

)T
e−

Ka
L
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Simple scheme II: T -fold ALOHA
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Simple scheme II: T -fold ALOHA
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Our scheme: high-level idea

Xn
1

Xn
2

Zn

Y n

• Send lattice points
• Decode sum of codewords via single-user decoder [Nazer-Gastpar’11]

• Use a subset of points forming a Sidon set
(all sums c1 + c2 distinct)

• Single-lattice (no MMSE scaling): R ≈ 1
2K log+ P

• Nested-lattice (with MMSE scaling): R ≈ 1
2K log+

(
1
K + P

)

Warning: issues with same-dither

• Lose power-factor compared to 1
2K log(1 +KP )

Yury Polyanskiy MAC tutorial 115



Sample performance of new scheme
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Related work

Many ideas appeared separately:

• Compute-and-forward [Nazer-Gastpar’11]
• Explicit codes for the modulo-2 binary adder channel [Lindström’69,
Bar-David et al.’93]

• 2-user codes for Fq-adder MAC [Dumer-Zinoviev’78, Dumer’95]
• Concatenation of codes with good minimum distance and codes for
the BAC [Ericson-Levenshtein’94]

• Concatenation of CoF inner codes with syndrome decoding for
compressed sensing [Lee-Hong’16]
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Details of our scheme

Three phases:
• Sidon set: {0, 1}k → Fnp
• Compute-and-forward: Fnp → Rn1

• T -fold ALOHA: Place n1-codeword in a random subframe
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Concatenation scheme

Inner code (CoF):
Convert T -user GMAC into a mod-p (noiseless) adder MAC.

w1 Elin c1 ∈ Clin

wT Elin cT ∈ Clin

w1, . . . ,wT are vectors in Zp

Clin is linear code over Zp

... y

z
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Concatenation scheme

Inner code (CoF):
Convert T -user GMAC into a mod-p (noiseless) adder MAC.

w1 Elin c1 ∈ Clin

wT Elin cT ∈ Clin

w1, . . . ,wT are vectors in Zp

Clin is linear code over Zp

... y

z

modp Dlin

yBAC

yBAC =
[∑T

i=1 wi

]
mod p
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Concatenation scheme

Inner code (CoF):
Convert T -user GMAC into a mod-p (noiseless) adder MAC.
Outer code (BAC):
CBAC code for mod-p adder T -MAC Here: only p = 2

w1 Elin c1 ∈ Clin

wT Elin cT ∈ Clin

w1, . . . ,wT are vectors in Zp

Clin is linear code over Zp

... y

z

modp Dlin

yBAC

yBAC =
[∑T

i=1 wi

]
mod p
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Concatenation scheme

Inner code (CoF):
Convert T -user GMAC into a mod-p (noiseless) adder MAC.
Outer code (BAC):
CBAC code for mod-p adder T -MAC Here: only p = 2

w1 Elin c1 ∈ Clin

wT Elin cT ∈ Clin

w1, . . . ,wT are vectors in Zp

Clin is linear code over Zp

... y

z

modp Dlin

yBAC

yBAC =
[∑T

i=1 wi

]
mod p

m1 EBAC

mt EBAC

... DBAC
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More on the CoF phase

• Clin ⊂ {0, 1}n is a binary linear code (shifted to ±
√
P )

• Receive y =
∑T

i=1 xi + z, shift, rescale, take mod-2, get

yCoF = [x + z] mod 2

where x = [
∑

i xi] mod 2 ∈ Clin ⊂ {0, 1}n
• The channel from x to yCoF is a BMS with folded Gsn noise

=⇒ Designing Clin is a standard coding task
Normal approximation: log |Clin| ≈ nC −

√
nV Q−1(εcode)
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More on the CoF phase

• Clin ⊂ {0, 1}n is a binary linear code (shifted to ±
√
P )

• Receive y =
∑T

i=1 xi + z, shift, rescale, take mod-2, get

yCoF = [x + z] mod 2

where x = [
∑

i xi] mod 2 ∈ Clin ⊂ {0, 1}n
• The channel from x to yCoF is a BMS with folded Gsn noise

=⇒ Designing Clin is a standard coding task
Normal approximation: log |Clin| ≈ nC −

√
nV Q−1(εcode)

What is lost in the conversion y 7→ yCoF?

Sum-capacity of y grows like log(T · P )
Capacity of yCoF only grows like log(P )
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More on the CoF phase

• Clin ⊂ {0, 1}n is a binary linear code (shifted to ±
√
P )

• Receive y =
∑T

i=1 xi + z, shift, rescale, take mod-2, get

yCoF = [x + z] mod 2

where x = [
∑

i xi] mod 2 ∈ Clin ⊂ {0, 1}n
• The channel from x to yCoF is a BMS with folded Gsn noise

=⇒ Designing Clin is a standard coding task
Normal approximation: log |Clin| ≈ nC −

√
nV Q−1(εcode)

What is lost in the conversion y 7→ yCoF?

Sum-capacity of y grows like log(T · P )
Capacity of yCoF only grows like log(P )

T -fold ALOHA reduces “power-loss” to 1/T instead of 1/Ka
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More on the BAC Phase

yBAC =

[
T∑

i=1

wi

]
mod 2, w1, . . . ,wT ∈ CBAC

Need to decode a list {w1, . . . ,wT }
Symmetric-capacity: Csym = 1

T
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More on the BAC Phase

yBAC =

[
T∑

i=1

wi

]
mod 2, w1, . . . ,wT ∈ CBAC

Need to decode a list {w1, . . . ,wT }
Symmetric-capacity: Csym = 1

T

How to construct explicit codes?
• Let H = [h1| · · · |hN ] be the parity-check matrix of a T -error
correcting code

• ⇒ all T -sums of columns are distinct
• Set CBAC = {h1, . . . ,hN}
• BCH parity check matrix: RBAC = 1

T (optimal!)
• Encoding: easy (just compute α, α3, · · · , α2T−1)
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More on the BAC Phase

yBAC =

[
T∑

i=1

wi

]
mod 2, w1, . . . ,wT ∈ CBAC

Need to decode a list {w1, . . . ,wT }
Symmetric-capacity: Csym = 1

T

How to construct explicit codes?
• Let H = [h1| · · · |hN ] be the parity-check matrix of a T -error
correcting code

• ⇒ all T -sums of columns are distinct
• Set CBAC = {h1, . . . ,hN}
• BCH parity check matrix: RBAC = 1

T (optimal!)
• Encoding: easy (just compute α, α3, · · · , α2T−1)

Problem: decoding complexity of BCH linear in n = 2k − 1
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More on the BAC Phase: Decoding BCH

Decoding:

• α1, . . . , αT ∈ F2k are messages
• yBAC = He′ – syndrome (!) ⇒ we know

∑
i(αi)

s, s ≤ 2T

• Error locator: Berlekamp-Massey yields coeffs of

σ(z) =

T∏

i=1

(1 + αiz)

• Find roots of σ(·) e.g. via [Rabin’80]

• Invert roots: using the identity α−1 = α2k − 1

Total complexity: O(kT 2 log2(T ) log log(T )) operations in F2k
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Spectral Efficiency > 1

The spectral efficiency ρ = Ka·k
n of our scheme is at most Rlin

What if ρ > 1?

Solution: - work with p > 2

• CoF phase requires good linear codes over Fp
• BAC phase can be implemented using H = [h1| · · · |hn] of a

[n = ps − 1, n− k = 2T ] Reed-Solomon code over Fps with

CBAC = {αhi : α ∈ Fps \ {0}, i = 1, . . . , ps − 1}

• Can use nested lattice to achieve the 1.53dB shaping gain
• Drawback: hard to analyze finite blocklength
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Approximate performance

Asymptotic optimum:
(
Eb
N0

)∗
= 22ρ−1

2ρ , with ρ = Ka·k
n .

Let L = Ka
αT for α ∈ (0, 1] be number of subframes

Pe ≈ P[T -collision] = Pr
(

Binomial
(
Ka − 1, αTKa

)
≥ T

)

Linear code rate Rlin = ρ
α

∆ =

(
Eb
N0

)
dB−

(
Eb
N0

)∗
dB

≈ 6ρ
1− α
α

+ 10 log10(α)

+10 log10(T )−10 log10(1− 2−2ρ)+1.53

T-Collision avoidance loss due to a 1/α increase in spectral efficiency
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Approximate performance

Asymptotic optimum:
(
Eb
N0

)∗
= 22ρ−1

2ρ , with ρ = Ka·k
n .

Let L = Ka
αT for α ∈ (0, 1] be number of subframes

Pe ≈ P[T -collision] = Pr
(

Binomial
(
Ka − 1, αTKa

)
≥ T

)

Linear code rate Rlin = ρ
α

∆ =

(
Eb
N0

)
dB−

(
Eb
N0

)∗
dB

≈ 6ρ
1− α
α

+ 10 log10(α)+10 log10(T )

−10 log10(1− 2−2ρ)+1.53

CoF loss from the reduction y 7→ yCoF
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Approximate performance

Asymptotic optimum:
(
Eb
N0

)∗
= 22ρ−1

2ρ , with ρ = Ka·k
n .

Let L = Ka
αT for α ∈ (0, 1] be number of subframes

Pe ≈ P[T -collision] = Pr
(

Binomial
(
Ka − 1, αTKa

)
≥ T

)

Linear code rate Rlin = ρ
α

∆ =

(
Eb
N0

)
dB−

(
Eb
N0

)∗
dB

≈ 6ρ
1− α
α

+ 10 log10(α)+10 log10(T )−10 log10(1− 2−2ρ)

+1.53

Loss of +1 in computation rate
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Approximate performance

Asymptotic optimum:
(
Eb
N0

)∗
= 22ρ−1

2ρ , with ρ = Ka·k
n .

Let L = Ka
αT for α ∈ (0, 1] be number of subframes

Pe ≈ P[T -collision] = Pr
(

Binomial
(
Ka − 1, αTKa

)
≥ T

)

Linear code rate Rlin = ρ
α

∆ =

(
Eb
N0

)
dB−

(
Eb
N0

)∗
dB

≈ 6ρ
1− α
α

+ 10 log10(α)+10 log10(T )−10 log10(1− 2−2ρ)+1.53

Shaping loss
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Low-complexity schemes: summary
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Other ideas for low-complexity schemes

• Work in progress by several groups
I Narayanan-Chamberland
I P.-Frolov
I Durisi-Dalai
I Popovski-Liva
I ... (sorry to those I forgot)

• Methods we did not cover:
I Coded Slotted ALOHA
I ... including with MPR capability
I iterative decoding same-codebook LDPCs
I super-imposed codes

• Problem is even more interesting with fading
I Random channel gains Hj help distinguish users.
I With many users, order statistics of Hj ’s becomes deterministic.
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Outline – revisited

Envisioned solution:
• To save battery: sensors sleep all the time, except transmissions.
• ... uncoordinated transmissions.
• ... they wake up, blast the packet, go back to sleep.
• Focus on low-energy (low Eb/N0)
• Focus on fundamental limits
• ... but with low-complexity solutions (single-user-only decoding).

Issues we need to understand:
1 packets are short: finite-blocklength (FBL) info theory
2 multiple-access channel: Classical MAC
3 low-complexity MAC: modulation, CDMA, multi-user detection
4 massive random-access: many users, same-codebook codes (NEW)

Supporting 10 users at 1Mbps is much easier than 1M users at 10bps.
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Thank you!
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Extra: More plots
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ALOHA + codes repairing 5-fold collisions
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Other schemes...
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