Part 1: Basics of Genomics

Olgica Milenkovic University of Illinois, Urbana-Champaign

North American School of Information Theory, Texas, 2018

May 2018

NUCLEIC ACIDS

• **DNA** (<u>Deoxyribonucleic Acid</u>) and **RNA** (<u>Ribonucleic Acid</u>): information storage molecules made up of "nucleotides".

Source: Nature

2

NUCLEIC ACIDS

• **DNA** (<u>D</u>eoxyribo<u>n</u>ucleic <u>A</u>cid) and **RNA** (<u>R</u>ibo<u>n</u>ucleic <u>A</u>cid): information storage molecules made up of "nucleotides".

DISCOVERING THE STRUCTURE OF DNA

• Chargaff's Rules (1949)

• Amount of each dNTP varies between organisms, but [dA]=[dT] and [dC]=[dG] in ALL organisms

	Adenine	Thymine	Adenine	Guanine	Purines			
	to	to	to	to	ю			
Source	Guanine	Cytosine	Thymine	Cytosine	Pyrimidines			
Ox	1.29	1.43	1.04	1.00	1.1			
Human	1.56	1.75	1.00	1.00	1.0			
Hen	1.45	1.29	1.06	0.91	0.99			
Salmon 😯	1.43	1.43	1.02	1.02	1.02			
Wheat	1.22	1.18	1.00	0.97	0.99			
Yeast	1.67	1.92	1.03	1.20	1.0			
Hemophilus influenzae	1.74	1.54	1.07	0.91	1.0			
E-coli K2	1.05	0.95	1.09	0.99	1.0			
Avian tubercle bacillus	0.4	0.4	1.09	1.08	1.1			
Serratia marcescens	0.7	0.7	0.95	0.86	0.9			
Bacillus schatz	0.7	0.6	1.12	0.89	1.0			

Table 3-2 Data Leading to the Formulation of Chargaff's Rules

SOURCE: After E. Chargaff et al., J. Biol. Chem. 177 (1949).

DISCOVERING THE STRUCTURE OF DNA

• Rosalind Franklin & Maurice Wilkins

• X-ray diffraction suggested helix of uniform width with stacked bases, with sugar-phosphate on outside.

• James Watson & Francis Crick

• Postulated double-helix model.

(b) Rosalind Franklin

(c) Franklin's X-ray diffraction pattern of wet DNA fibres

THE CENTRAL DOGMA

Source: Genius Media Group

- DNA encodes genetic information that "directs" the cell how to make proteins and RNAs.
- Information carried in the nucleotide sequence is copied into an RNA (TRANSCRIPTION).
- Information in RNA is used to build proteins (TRANSLATION).

DNA REPLICATION

Complementary base pairing (A-T, C-G). Semiconservative model of DNA replication.

7

Source: Nature

DNA REPLICATION REQUIRES PRIMERS!

• "A primer is a short strand of RNA or DNA (generally about 18-22 bases) that serves as a starting point for DNA synthesis. It is required for DNA replication because the enzymes that catalyze this process, DNA polymerases, can only add new nucleotides to an existing strand of DNA."

• Source: Wikipedia ©.

DNA HYBRIDIZES AND DENATURES

TRANSCRIPTION (DNA \rightarrow RNA)

o RNA (usually) single-stranded. o T → U.

TRANSLATION (RNA \rightarrow PROTEIN)

• Alternative Splicing in eukaryotes.

Source: NCBI

- Codon table of Amino Acids (protein)
 - Degenerate (redundant).

11

READING DNA: SANGER SEQUENCING

Sequencing by capilary electrophoresis

READING DNA: SANGER SEQUENCING

Gel:

GCGAATGCGTCCACAACGCTACAGGTG GCGAATGCGTCCACAACGCTACAGGT GCGAATGCGTCCACAACGCTACAGG GCGAATGCGTCCACAACGCTACAG GCGAATGCGTCCACAACGCTACA GCGAATGCGTCCACAACGCTAC GCGAATGCGTCCACAACGCTA GCGAATGCGTCCACAACGCT GCGAATGCGTCCACAACGC GCGAATGCGTCCACAACG GCGAATGCGTCCACAAC GCGAATGCGTCCACAA GCGAATGCGTCCACA GCGAATGCGTCCAC GCGAATGCGTCCA GCGAATGCGTCC GCGAATGCGTC GCGAATGCGT GCGAATGCG GCGAATGC GCGAATG GCGAAT

READING DNA: COVERAGE AND READ LENGTH

How many reads to we need to be sure we cover the whole genome?

An **island** is a contiguous group of reads that are connected by overlaps of length $\geq \theta L$. (Various colors above)

Want: Expression for expected # of islands given N, g, L, θ .

From C. Kingsford lecture notes

READING DNA: COVERAGE AND READ LENGTH

 $\lambda := N/g$ = probability a read starts at a given position (assuming random sampling)

Pr(k reads start in an interval of length x) x trials, want k "successes," small probability λ of success Expected # of successes = λx Poisson approximation to binomial distribution:

$$\Pr(k \text{ reads in length } x) = e^{-\lambda x} \frac{(\lambda x)^k}{k!}$$

Expected # of islands = *N* × Pr(read is at rightmost end of island)

 $(1-\theta)L \quad \theta L = N \times \Pr(\text{o reads start in } (1-\theta)L)$ $= Ne^{-\lambda(1-\theta)L} \frac{\lambda^{0}}{0!} \text{ (from above)}$ $= Ne^{-\lambda(1-\theta)L}$ $= Ne^{-(1-\theta)LN/g} \leftarrow LN/g \text{ is called the$ **coverage** $} c.$

From C. Kingsford lecture notes

READING DNA: COVERAGE AND READ LENGTH

Rewrite to depend more directly on the things we can control: c and θ

Expected # of islands = $Ne^{-(1-\theta)LN/g}$

From C. Kingsford lecture notes

READING DNA: LESSONS

Mate-Pair Shotgun DNA Sequencing

DNA SEQUENCING: ILLUMINA PLATFORMS

Illumina HiSeq 2000

Courtesy of Alvaro Hernandez, UIUC

ILLUMINA HISEQ 2500

ILLUMINA LIBRARY FRAGMENT:

Courtesy of Alvaro Hernandez, UIUC

DNA SEQUENCING: ILLUMINA NOVASEQ

NovaSeq 5000 and 6000 cost **\$850,000** and **\$985,000 (2017)**

In "Rapid Run Mode," the **Illumina HiSeq** 2500 instrument is capable of generating approximately 150 millions **reads** passing filter **per** lane, or up to 300 million **reads** passing filter **per** lane for paired-end sequencing.

NovaSeq: Output size up to 6Tb, up to 6 billion reads per run, length of reads 2x150

Courtesy of Alvaro Hernandez, UIUC

Text-based format for nucleotide or peptide sequences Line 1: description

• ">" symbol

• Sequence identifier

Database	Format
GenBank	gb accession locus
EMBL Data Library	emb accession locus
DDBJ, DNA Database of Japan	dbj accession locus
NBRF PIR	pir entry
Protein Research Foundation	prf name
SWISS-PROT	sp accession entry name
Brookhaven Protein Data Bank	pdb entry chain
Patents	pat country number
GenInfo Backbone Id	bbs number
General database identifier	gnl database identifier
NCBI Reference Sequence	ref accession locus
Local Sequence Identifier	lcl <i>identifier</i>

• Description [optional]

• Line 2: sequence data (1 or more lines)

- Protein or nucleic acids sequences
 - Amino acids: A-Z, * (translation stop), (gap)
 - Nucleic acids: A, C, G, T, U, R, Y, K, M, S, W, B, D, H, V, N (any A C G T U), X (masked), (gap)
- Each line less than 80 characters

• File extensions

Extension	Meaning	Notes
fasta (.fas)	Generic fasta	Can be .fa, .seq, .fsa
fna	Fasta nucleic acid	Generic nucleic acids
ffn	FASTA nucleotide coding regions	Coding regions for a genome
faa	Fasta amino acid	.mpfa: multiple protein fasta
frn	FASTA non-coding RNA	Non-coding RNA regions

• Example: "random.fna"

>SEQUENCE_1 TGGCAATCTTGCTTCTGTTTACGGCTGGCATAGTTACGACA GGTCTTTTTCT >SEQUENCE_2 CCGGTTTCTTCAACCTTAGTTCTGGTAGCAGAATCAAGATA CATGTTTTCGT >SEQUENCE_3 GACGGCGTCAGCTGCAACAACTGTGCGCGCCATTGCCCTG CCGGGGCGATC

• Example: "NP_852610.1"

>gi|31563518|ref|NP_852610.1| microtubule-associated proteins 1A/1B light chain 3A isoform b [Homo sapiens] MKMRFFSSPCGKAAVDPADRCKEVQQIRDQHPSKIPVIIERY KGEKQLPVLDKTKFLVPDHVNMSELVKI

• Text-based format for sequences and quality scores

• Line 1

- "@" symbol
- Sequence identifier
- Description [optional]
- Line 2
 - Raw sequence letters
- Line 3
 - "+" symbol
 - Sequence identifier
 - Description [optional]
- Line 4
 - Quality values for sequences in Line 2

- Quality value *Q* is an integer-valued function of *p*, the probability that the corresponding base call is incorrect
- Phred quality score:
 - $Q_{sanger} = -10 \log_{10} p$
- Quality values in increasing order of quality (ASCII):

!"#\$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\] ^_`abcdefghijklmnopqrstuvwxyz{|}~

• Illumina sequence identifiers

• Example: @HWUSI-EAS100R:6:73:941:1973#0/1

HWUSI-EAS100R	Unique instrument name
6	Flowcell lane
73	Tile number within flowcell lane
941	'x'-coordinate of the cluster within tile
1973	'y'-coordinate of the cluster within tile
#0	Index number for multiplexed sample
/1	Member of a pair

• File extensions

• .fq, .fastq

• Example (Illumina): "sample1.fq"

• Example (NCBI read archive)

THIRD GENERATION SEQUENCERS

Credit: LabBiotech

Biological (protein) versus solid state nanopores.

THIRD GENERATION SEQUENCERS

Credit: LabBiotech

Advantages: Very long reads (15,000 or more).

Disadvantages: Many substitution, insertion and deletion errors.

MINION AND GRIDION

Cheap(er) and Portable

RECONSTRUCTING SEQUENCES FROM TRACES ALIGNMENT

Provide and	1.20		1.22	24	L a.e.	20		4.0	1.45	L rol		1	60	0.1	0.0	1.00	la a al	1	la a a l	1		1	1.40	1.00	l a e e	la e e		1.02	Traini	1
Position	20	22	23	24	25	26	32	42	45	50	53	56	69	81	93	103	121	122	123	124	147	148	149	153	155	156	170	183	Total	
Consensus	A	A	A	A	G	C	A	C	T	A	C	C	C	C	A	A	A	т	T	A	G	T	T	G	C	G	C	G		
AXE	A	-	-	-	-	-	Α	C	C	A	C	С	Т	С	Α	Α	-	-	-	-	G	Т	Т	Т	C	G	Α	G	13	(m)
DW	A	-	-	-	-	-	Α	С	С	Α	С	С	Т	С	Α	A	-	-	-	-	G	т	Т	G	С	G	A	G	12	
FNZ	A	-	-	-	-	-	Α	С	С	Α	С	С	Т	С	Α	Α	-	-	-	-	G	Т	Т	G	С	G	A	G	12	1
NQ	A	-	-	-	-	-	Α	С	С	G	С	С	Т	С	Α	Α	-	-	-	-	G	Т	Т	G	С	G	С	G	12	1
ZT	A	-	-	-	-	-	A	С	С	G	С	С	Т	С	Α	A	-	-	-	-	G	Т	Т	G	С	G	С	G	12	1
MEM	A	-	-	-	-	-	Α	С	С	G	Т	С	Т	С	A	A	-	-	-	-	G	Т	т	G	С	G	С	G	13	1
GD	A	Α	Α	Α	G	С	A	С	т	А	С	С	С	G	Α	Α	-	-	-	-	G	С	Т	G	T	G	С	G	7	1
IM	A	Α	Α	Α	G	С	Α	С	т	Α	С	С	С	G	Α	Α	-	-	-	-	G	С	Т	G	Т	G	С	G	7	1
NRS	A	Α	Α	Α	G	С	Α	С	т	Α	С	С	С	G	Α	Α	-	-	-	-	G	С	Т	G	Т	G	С	G	7	1
ZPJ	A	Α	Α	Α	G	С	Α	С	т	Α	С	С	С	G	Α	Α	-	-	-	-	G	С	Т	G	Т	G	С	G	7	1
AB	Α	A	Α	Α	G	C	Α	С	т	Α	С	С	С	С	Α	Α	Α	т	Т	Α	G	Т	Т	G	С	G	С	G	0	
xc	A	Α	Α	Α	G	C	Α	С	т	Α	С	С	С	С	Α	Α	Α	Т	Т	Α	G	Т	Т	G	С	G	С	G	0	1
MR	Т	Α	Α	A	G	C	С	С	Т	Α	С	С	С	С	Α	A	Α	т	Т	Α	G	т	Т	G	С	G	C	G	2	
UBG	Т	Α	Α	Α	G	C	С	С	Т	Α	С	С	С	С	Α	Α	Α	Т	Т	А	G	Т	Т	G	С	G	C	G	2	
FYC	A	A	Α	Α	G	C	A	Α	Т	Α	С	Т	С	С	Т	G	A	т	Т	Α	G	т	Т	G	С	Т	С	-	6	
JRR	A	A	Α	Α	G	C	Α	Α	Т	Α	С	Т	C	С	Т	G	Α	Т	Т	А	G	Т	Т	G	С	Т	С	-	6	
UM	Α	A	Α	A	G	C	Α	A	Т	Α	С	Т	С	С	Т	G	A	т	Т	Α	G	т	Т	G	С	Т	С	-	6	
wz	A	Α	Α	Α	G	C	Α	Α	Т	Α	С	Т	C	С	А	G	A	Т	Т	А	G	Т	Т	G	C	Т	С	-	5	U
DGO	A	Α	Α	А	G	C	Α	Α	Т	Α	C	С	C	C	Α	Α	Α	Т	Т	А	-	-	-	G	C	Т	C	-	6	
	17A	13A	13A	13A	13G	13C	17A	14C	13T	16A	18C	15C	13C	15C	16A	15A	9A	9T	9T	9A	18G	14T	18T	18G	15C	14G	16C	14G	135	
Summary:	2T	6-	6-	6-	6-	6-	2C	5A	6C	3G	1T	4T	6T	4G	3T	4G	10-	10-	10-	10-	1-	4C	1-	1T	4T	5T	3A	5-		Ŧ

Dynamic programming, greedy algorithms etc Basic computation of weighted Levenshtein distance CLUSTAL OMEGA, MUSCLE, etc

RECONSTRUCTING SEQUENCES FROM TRACES ALIGNMENT

FROM READING TO WRITING

35

FROM READING TO WRITING

Expensive

Relatively slow but parallelizable

Commercially available from Agilent Twist IDT

Credit: Agilent (INKJet Technology)

FROM WRITING TO COPYING

PCR machine Thermofisher (\$200)

Credit: NIH

AND COMPUTING: ADLEMAN'S EXPERIMENT

38

Credit: Scientific American and Len Adleman

BEYOND DNA: CHEMICALLY MODIFIED DNA

48

BEYOND DNA: SYNTHETIC POLYMERS

Credit: J. F. Lutz