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Coding Problems



Fundamentally New Coding Questions

▸ DNA Profile and Uniquely Reconstructable Codes (IDT Synthesis, Illumina
Sequencing)

Codes for DNA Sequence Profiles, IT, 2016; Unique Reconstruction of Coded
Strings from Multiset Substring Spectra, ISIT 2018.

▸ Address Design for Random Access (All Platforms)

Mutually Uncorrelated Primers for DNA-Based Data Storage, IT 2018.

▸ Coding for Nanopore readout systems (MinION and Solid State)

Asymmetric Lee Distance Codes for DNA-Based Storage, IT 2017;
The Hybrid k-Deck Problem: Reconstructing Sequences from Short and Long
Traces, ISIT 2017.

▸ Small-Intersection Set Discrepancy (Nicking)

Manuscript in preparation, 2018.

▸ Codes in the Damerau Distance (Aging)

Codes in the Damerau Distance for Deletion and Adjacent Transposition
Correction, IT 2018.
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DNA Profile Codes
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DNA Storage Channel – Output Profile Vectors
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Output profile vector

Given an input sequence 10011001, we obtain an output profile vector that
reflects the (possibly erroneous) count of each substring

000 001 010 011 100 101 110 111
(0, 1, 0, 2, 0, 1, 1, 0).

Note: position of substring is not known!
Note: input is a binary sequence, while the output is an integer-valued vector.
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Profile vector

Given an input sequence x = 10011001, its profile vector denoted by p(x, q, `)
reflects the actual count of each substring

000 001 010 011 100 101 110 111
(0, 2, 0, 1, 2, 0, 1, 0).



DNA Storage Channel – Profile Vectors

DNA Storage
Channel

-
Codeword

x = 10011001
p(x,2,3) = (0,2,0,1,2,0,1,0)

-
Output profile vector

x̂ = (0,1,0,2,0,1,1,0)

Profile vector

Given an input sequence x = 10011001, its profile vector denoted by p(x, q, `)
reflects the actual count of each substring

000 001 010 011 100 101 110 111
(0, 2, 0, 1, 2, 0, 1, 0).



Code Design Criteria

Encoder
DNA Storage

Channel
-

Message

{
Yes
No

}

-
Codeword

{
x = 10011001
y = 10101010

}

-
Output profile vector

x̂ = (0,1,0,2,0,1,1,0)

000 001 010 011 100 101 110 111
p(x; 2,3) = (0, 2, 0, 1, 2, 0, 1, 0) ← dist with x̂ is 3
p(y; 2,3) = (0, 0, 3, 0, 0, 3, 0, 0) ← dist with x̂ is 5

Criterion 1

Codewords whose profile vectors are far from each other.

We define the `-gram distance between x and y to be the asymmetric distance
between the profile vectors of x and y.

Define the asymmetric distance as max(∆(u,v),∆(v,u)), where ∆(u,v) = ∑i max(ui −vi,0).
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Encoder
DNA Storage
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Message
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}

-
Codeword

{
x = 10011001
y = 10101010

}

-
Output profile vector

x̂ = (0,1,0,2,0,1,1,0)

000 001 010 011 100 101 110 111
p(x; 2,3) = (0, 2, 0, 1, 2, 0, 1, 0)
p(y; 2,3) = (0, 0, 3, 0, 0, 3, 0, 0)

Criterion 2

Codewords whose `-substrings are resilient to errors.

Certain reliability considerations in DNA storage sequence designs:

▸ Balanced profiles of `-substrings. Number of C,G bases needs to be
roughly fifty percent.

▸ Forbidden `-substrings. Certain substrings like GCG and CGC or GGG
are more likely to cause sequencing errors.



Code Design Criteria

Encoder
DNA Storage

Channel
-

Message

{
Yes
No

}

-
Codeword

{
x = 10011001
y = 10101010

}

-
Output profile vector

x̂ = (0,1,0,2,0,1,1,0)

000 001 010 011 100 101 110 111
p(x; 2,3) = (0, 2, 0, 1, 2, 0, 1, 0)
p(y; 2,3) = (0, 0, 3, 0, 0, 3, 0, 0)

Criterion 2

Codewords whose `-substrings are resilient to errors.

Here, we assume that the `-substrings belong to
S = {001,010,011,100,101,110}.



Fundamental Question - Number of Distinct Profile Vectors

The following example is bad, because the codewords share the same profile
vector.

Encoder
DNA Storage

Channel
-

Message

{
Yes
No

}

-
Codeword

{
00101100
11010011

}

-
Profile vector

(0,1,1,1,1,1,1,0)

Distinct `-gram Profile Vectors

Define Q(n;S) to be the set of q-ary words of length n with distinct `-gram
profile vectors whose `-grams belong to S.
Determine the size of Q(n;S).

n : length of codewords

q : alphabet size

` : length of substrings / grams

S : set of “constrained” substrings (note S is a set of q-ary strings of length `)



Fundamental Question - Code Construction

`-gram Reconstruction Code (GRC)

C ⊆ Q(n;S) is an (n, d;S)-`-GRC if the `-gram distance between any pair of
distinct words is at least d.
Construct good (n, d;S)-`-GRC. Good means “more codewords.”

n : length of codewords

q : alphabet size

` : length of substrings / grams

S : set of “constraint” substrings (note S is a set of q-ary strings of length `)

d : minimum `-gram distance between any pair of codewords



Enumeration of Profile Vectors



De Bruijn Graphs

Example: q = 2, ` = 3.
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Nodes are q-ary strings of length ` − 1.
(v,v′) is an arc if
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Restricted De Bruijn Graphs

Let S(`;w1,w2) denote the binary strings of length ` with weight between w1 and w2.

S = S(3; 1,2) S = S(4; 2,3)
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Restricted de Bruijn Graphs D(S) (Ruskey, Sawada, Williams, 2012)

Nodes V are ` − 1-prefixes and -suffixes of strings in S.
(v,v′) is an arc if

v2 v3 v`−1

= = . . . =

v′1 v′2 v′`−2

and v1v2⋯v`−1v′`−1 ∈ S.



Profile Vectors and Flow Vectors
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Representing profile vectors of words in Q(n;S) using the digraph D(S).



Profile Vectors and Flow Vectors
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Profile vectors of closed words in Q(n;S) are flow vectors in D(S).

Closed Words

Closed words that are words that start and end with the same (` − 1)-gram.
Denote the set of q-ary words of length n with distinct `-gram profile whose
`-grams belong to S by Q(n;S).

Flow Vectors

Incoming flow is equal to outgoing flow at each node.



Necessary Conditions

Let u be a profile vector of a closed word. Then u satisfies the following
conditions.

Flow conservations equations:

Bu = 0,

where B be the incidence matrix of D(S).

Sum of flows:

1u = n − ` + 1.
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Let A = ( 1
B
) and b = (1,0, . . . ,0)T . We rewrite the equations as

Necessity

Au = (n − ` + 1)b and u ≥ 0.



Sufficient Conditions

Flow vectors are not always profile vectors

Let u ≥ 0 be such that
Au = (n − ` + 1)b.

This does not imply that u is a profile vector!
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Sufficient Conditions

If all flows are positive, then the flow vector is indeed a profile vector.
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Profile vector of 0110101110011.

Sufficiency

Au = (n − ` + 1)b and u > 0.



Profile Vectors and Lattice Points

Consider the following two sets of lattice points:

F(n;S) ≜ {u ∈ Z∣S∣ ∶Au = (n − ` + 1)b, u ≥ 0},

E(n;S) ≜ {u ∈ Z∣S∣ ∶Au = (n − ` + 1)b, u > 0}.

∣E(n;S)∣ ≤ ∣Q(n;S)∣ ≤ ∣F(n;S)∣.

Observations

▸ Define the polytope

PS = {u ∈ R∣S∣ ∶Au = b, u ≥ 0}.

▸ F(n;S) is the set of lattice points in
(n − ` + 1)PS .

▸ E(n;S) is the set of lattice points in the
interior of (n − ` + 1)PS .

(n − ` + 1)PS
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Lattice Point Enumeration in Dilated Polytopes

P

1

1

2

2

3

3
5P

5 10 15

5

10

15

For a polytope P ⊂ RN and t ∈ R, the dilation tP is given by

tP = {tx ∶ x ∈ P}.

The lattice point enumerator for P is LP ∶ R→ Z defined by

LP(t) = ∣tP ∩ ZN
∣.



Lattice Point Enumeration in Dilated Polytopes
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For a polytope P ⊂ RN and t ∈ R, the dilation tP is given by

tP = {tx ∶ x ∈ P}.

The lattice point enumerator for P is LP ∶ R→ Z defined by

LP(t) = ∣tP ∩ ZN
∣.

Theorem (Ehrhart)

If P is a rational D-dimensional polytope, then LP(t) is a “quasipolynomial”
in t with degree D.



Lattice Point Enumeration in Dilated Polytopes
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For a polytope P ⊂ RN and t ∈ R, the dilation tP is given by

tP = {tx ∶ x ∈ P}.

The lattice point enumerator for P is LP ∶ R→ Z defined by

LP(t) = ∣tP ∩ ZN
∣.

Theorem (Ehrhart-Macdonald’s reciprocity)

The number of lattice points in the interior of tP is given by (−1)DLP(−t),
and is thus a “quasipolynomial” with degree D.



Lattice Point Enumeration in Dilated Polytopes
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For a polytope P ⊂ RN and t ∈ R, the dilation tP is given by

tP = {tx ∶ x ∈ P}.

The lattice point enumerator for P is LP ∶ R→ Z defined by

LP(t) = ∣tP ∩ ZN
∣.

Lemma

The polytope PS has dimension ∣S∣ − ∣V ∣ if D(S) is strongly connected.



Main Enumeration Result
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Here, ∣S∣ = 10, ∣V ∣ = 7 and
so, the number of distinct
profile vectors of closed
words is

∣Q(n;S)∣ = Θ′(n3).

Theorem

Suppose D(S) is strongly connected. Then ∣E(n;S)∣ and ∣F(n;S)∣ are both
“quasipolynomials” in n of the same degree ∣S∣ − ∣V ∣. In particular,
∣Q(n;S)∣ = Θ′ (n∣S∣−∣V ∣).

▸ A quasipolynomial f is a function in n of the form cD(n)n
D
+ cD−1(n)n

D−1
+⋯+ c0(n),

where cD, cD−1, . . . , c0 are periodic functions in n. If cD is not identically equal to zero, f
is said to be of degree D.

▸ f(n) = Ω′
(g(n)) means that for a fixed value of `, there exists an integer λ and a positive

constant c so that f(n) ≥ cg(n) for sufficiently large n with λ∣(n − ` + 1). Furthermore,
f(n) = Θ′

(g(n)) if f(n) = O(g(n)) and f(n) = Ω′
(g(n)).



Main Enumeration Result
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Here, ∣S∣ = 10, ∣V ∣ = 7 and
so, the number of distinct
profile vectors of closed
words is

∣Q(n;S)∣ = Θ′(n3).

Theorem

Suppose D(S) is strongly connected. Then ∣E(n;S)∣ and ∣F(n;S)∣ are both
“quasipolynomials” in n of the same degree ∣S∣ − ∣V ∣. In particular,
∣Q(n;S)∣ = Θ′ (n∣S∣−∣V ∣).

Results hold if n satisfies certain periodicity conditions.



Code Constructions



Varshamov Codes

Fix d and let p be a prime such that p > d and p > N . Choose N distinct
nonzero elements α1, α2, . . . , αN in Z/pZ and consider the matrix

H ≜
⎛
⎜⎜⎜
⎝

α1 α2 ⋯ αN

α2
1 α2

2 ⋯ α2
N

⋮ ⋮ ⋱ ⋮
αd
1 αd

2 ⋯ αd
N

⎞
⎟⎟⎟
⎠
.

Pick any vector β ∈ (Z/pZ)N and define the code

C(H,β) ≜ {u ∈ ZN ∶Hu ≡ β mod p}.

Theorem (Varshamov, 1973)

C(H,β) is a code of length N with minimum asymmetric distance d + 1.



GRC as Subcodes of Varshamov Codes

Construction I

Let pQ(n;S) be the set of distinct profile vectors of words in S and N = ∣S∣.
Then C(H,β) ∩ pQ(n;S) is an (n, d + 1;S)-`-gram reconstruction code.

For example, let q = 2, ` = 3, S = {001,010,011,100,101,110} and so, N = 6. Let
d = 3 and we pick p = 7,

H = (
1 2 3 4 5 6
1 4 2 2 4 1

) and β = (
0
0
) .

Then C(H,β) contains the following words:

(4,0,0,1,0,1) (0,1,1,4,0,0)
(2,2,0,2,0,0) ↔ 00100100 (0,1,0,0,4,1)
(1,4,0,0,1,0) (0,0,4,1,1,0)
(1,1,1,1,1,1) ↔ 00101100 (0,0,2,0,2,2) ↔ 01101101
(1,0,1,0,0,4)

of which, three are profile vectors in pQ(8;S) (profile vectors of words of length

eight).

How many codewords does Construction I guarantee?
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Ehrhart Theory Continues

Define the (∣V ∣ + 1 + d) × (∣S∣ + d)-matrix

AGRC ≜ ( A 0

H −pId
) .

Proposition

If D(S) is strongly connected and C(H,0) ∩Null>0B is nonempty, then
∣C(H,0) ∩ pQ(n;S)∣ is at least the number of lattice points in the interior of
the polytope

PGRC = {u ∈ R∣S∣+d ∶AGRCu = (n − ` + 1)b, u ≥ 0} .

▸ Null>0B denotes the set of vectors in the null space of B with strictly positive entries.

Theorem

If D(S) is strongly connected and C(H,0) ∩Null>0B is nonempty, then

∣C(H,0) ∩ pQ(n;S)∣ = Ω′ (n∣S∣−∣V ∣) .

▸ f(n) = Ω′
(g(n)) means that for a fixed value of `, there exists an integer λ and a positive

constant c so that f(n) ≥ cg(n) for sufficiently large n with λ∣(n − ` + 1).



Systematic Encoding

Objective

Efficient one-to-one mapping

φ ∶ {0,1, . . . ,m − 1}∣S∣−∣V ∣−1 → pQ(n;S)

such that v is “embedded” in φ(v).

For example, 012 encodes systematically into (3,1,0,2,1,1,2,2), the profile
vector of 00000110111100.

Theorem

Suppose D(S) is Hamiltonian and contains loops. For a suitable choice of m,
we can systematically encode {0,1, . . . ,m − 1}∣S∣−∣V ∣−1 into pQ(n;S).
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Systematic Encoding

Construction II

Suppose D(S) is Hamiltonian and contains loops. For a suitable choice of m, if
C is an m-ary (∣S∣ − ∣V ∣ − 1, d)-AECC, then {φ(v) ∶ v ∈ C} is a (n, d;S)-`-GRC.

Consider the following code with minimum asymmetric distance 3.

{(0,0,0), (1,4,2), (2,3,4), (3,2,1), (4,1,3)}.

We systematic encode them to 3-gram profile vectors of words of length 8.

(0,0,0) (0,0,1) (0,1,0) (0,1,1) (1,0,0) (1,0,1) (1,1,0) (1,1,1)
(18, 0, 0, 0, 0, 0, 0, 0)
(1, 1, 1, 4, 1, 4, 4, 2)
(3, 1, 2, 2, 1, 3, 2, 4)
(6, 2, 3, 1, 2, 2, 1, 1)
(0, 4, 4, 1, 4, 1, 1, 3)

This forms a 3-gram reconstruction code of length 20 and distance at least 3.



Corollaries of Main Enumeration Result
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Here, ∣Q(n;S)∣ = n3

288
+O(n2).

Theorem (Jacquet, Knessl, Szpankowski, 2012)

Fix q, ` and let S be the set of all q-ary strings of length `. Then

∣E(n;S∣ ∼ ∣F(n;S)∣ ∼ ∣Q(n;S)∣ ∼ c(S)nq`−q`−1 where c(S) is a constant.

f ∼ g means that limn→∞ f(n)/g(n) = 1.

Corollary

Suppose D(S) is strongly connected and contains loops. Then

∣E(n;S∣ ∼ ∣F(n;S)∣ ∼ ∣Q(n;S)∣ ∼ c(S)n∣S∣−∣V ∣ where c(S) is a constant.



Corollaries of Main Enumeration Result

Results can be extended to enumerate profile vectors of

▸ all words (not nec. closed) with D(S) strongly connected;

▸ closed words with D(S) not strongly connected;

▸ all words with D(S) not strongly connected.

q = 4, ` = 2, S = {00,01,10,12,23,32,33}

0

00

++
01 ))

1
12 //

10

ii 2

23 ))
3

32

ii

33

ss Ð→ V1
// V2

Proof Idea when D(S) is not strongly connected: Consider the strongly
connected components of D(S) and apply the main enumeration result.



Computing the Leading Coefficient for Q(n;S)

Recall the polytope P = {u ∈ R∣S∣ ∶Au = (n − ` + 1)b, u ≥ 0}.
The lattice point enumerator

L(n − ` + 1) = #(Zn ∩ (n − ` + 1)P)

gives the number of points in F(n;S). Hence, the “leading coefficient” for
Q(n;S).
The lattice point enumerator can be computed in polynomial time when the
dimension of the polytope is fixed (Barvinok, 1994). However, the dimension of
P is ∣S∣ − ∣V ∣ ≈ q`.

Question

Efficient methods to compute the lattice point enumerator or compute the
leading coefficient.



Practical Methods for Profile Counting

Challenge: Counting accurately the number of `-grams.
Instead, we use certain auxiliary information.

▸ The presence or absence of `-grams

▸ The relative order of `-grams



Practical Methods for Profile Counting - Presence or Absence of `-grams

Fragmentation Presence or
absence

Sequencing

-00000110111100 -

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

000 ∶ 3 100 ∶ 1
001 ∶ 1 101 ∶ 1
010 ∶ 0 110 ∶ 2
011 ∶ 2 111 ∶ 2

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

-

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

001, 100,
001, 101,

110,
011, 111

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

Related combinatorial problems:

▸ Enumeration of “profile vectors”. Tan, Shallit (2013) studied this problem
in the context of “factors of words”.

▸ Edge-disjoint path decompositions of de Bruijn graphs. Variety of
decompositions surveyed by Heinrich (1993), Bryant and El-Zanati (2007).
Cooper and Graham (2004) studied cycle decompositions of de Bruijn
graphs.



Practical Methods for Profile Counting - Relative Order of `-grams

Fragmentation
Relative order
010, 101, 111

Sequencing

-00000110111100 -

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

000 ∶ 3 100 ∶ 1
001 ∶ 1 101 ∶ 1
010 ∶ 0 110 ∶ 2
011 ∶ 2 111 ∶ 2

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

-010 ≺ 101 ≺ 111

Related coding problem:

▸ Rank modulation codes. Jiang, Mateescu, Schwartz, Bruck (2009)
proposed these codes for nonvolatile flash memories.



Growth rate for Q(n;S) when ` grows

When q, ` is fixed, ∣Q(n;S)∣ is polynomial in n.
Suppose that q is fixed and ` is a function of n, or ` = f(n).

▸ For example, when ` = n and S = {0,1, . . . , q − 1}`, then ∣Q(n;S)∣ = qn,
which has exponential growth in n.

Question

How “small” can ` be so as to ensure ∣Q(n;S)∣ has exponential growth in n?



Encoding and Decoding Complexities

Recall that n is the length of codewords.
`-gram distance and code constructions are defined using profile vectors of
length ∣S∣ ≈ q`.
When n ≤ q`, computations based on profile vectors are inefficient.
Ukkonen (1992) showed that (a variant) of the `-gram distance can computed
in time O(qn) with space O(qn).

Question

Assume q fixed. Can encoding and decoding by done in time and space
polynomial in n?
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