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Part 1:
Lattice Fundamentals
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Notation

• C: the complex numbers (a field)

• R: the real numbers (a field)

• Z: the integers (a ring)

• X n: the n-fold Cartesian product of set X with itself;
X n = {(x1, . . . , xn) : x1 ∈ X , x2 ∈ X , . . . , xn ∈ X}. If X is a
field, then the elements of X n are row vectors.

• Xm×n: the m × n matrices with entries from X .

• If (G ,+) is a group with identity 0, then G ∗ , G \ {0} denotes
the nonzero elements of G .
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Euclidean Space

Lattices are discrete subgroups (under vector addition) of
finite-dimensional Euclidean spaces such as Rn.

In Rn we have

• an inner product: 〈x, y〉 ,
∑n

i=1 xiyi
• a norm: ‖x‖ ,

√
〈x, x〉

• a metric: d(x, y) , ‖x− y‖ (1, 0)

(0, 1)

•

•

•

x

y

0

d(x, y)

‖y‖

‖x
‖

• Vectors x and y are orthogonal if 〈x, y〉 = 0.

• A ball centered at the origin in Rn is the set

Br = {x ∈ Rn : ‖x‖ ≤ r}.

• If R is any subset of Rn, the translation of R by x is, for any
x ∈ Rn, the set x +R = {x + y : y ∈ R}.
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Lattices

Definition

Given m linearly independent (row) vectors g1, . . . , gm ∈ Rn, the
lattice Λ generated by them is defined as the set of all integer linear
combinations of the gi ’s:

Λ(g1, . . . , gm) ,

{
m∑
i=1

cigi : c1 ∈ Z, c2 ∈ Z, . . . , cm ∈ Z

}
.

• g1, g2, . . . , gm: the generators of Λ

• n: the dimension of Λ

• m: the rank of Λ

• We will focus only on full-rank lattices (m = n) in this tutorial.
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Example: Λ
((

1
2 ,

2
3

)
,
(

1
2 ,−

2
3

))

g1

g2

0

3g1 + g2

−3g2
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Example: Λ
((

3
2 ,

2
3

)
, (1, 0)

)

g1

g2

0

3g1
+ g2

−3g2

9



Generator Matrix

Definition

A generator matrix GΛ for a lattice Λ ⊆ Rn is a matrix whose rows
generate Λ:

GΛ =

g1
...

gn

 ∈ Rn×n and Λ = {cGΛ : c ∈ Zn}.

Example:

G1 =

[
1/2 2/3
1/2 −2/3

]
and G2 =

[
3/2 2/3

1 0

]
generate the previous examples.
By definition, a generator matrix is full rank.
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When do G and G′ Generate the Same Lattice?

Recall that a matrix U ∈ Zn×n is said to be unimodular if
det(U) ∈ {1,−1}. If U is unimodular, then U−1 ∈ Zn×n and U−1 is
also unimodular. (U is unimodular ↔ det(U) is a unit.)

Theorem

Two generator matrices G,G′ ∈ Rn×n generate the same lattice if
and only if there exists a unimodular matrix U ∈ Zn×n such that
G′ = UG.

(In any commutative ring R, for any matrix A ∈ Rn×n, we have

A adj(A) = det(A)In, where adj(A), the adjugate of A is given by

[adj(A)]i,j = (−1)i+jMj,i where Mj,i is the minor of A obtained by deleting the

jth row and ith column of A. Note that adj(A) ∈ Rn×n. The matrix A is

invertible (in Rn×n) if and only if det(A) is an invertible element (a unit) of R, in

which case A−1 = (det(A))−1 adj(A). cf. Cramer’s rule.)
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Proof

For “⇒”: Assume that G and G′ generate the same lattice. Then
there are integer matrices V and V′ such that

G′ = VG and G = V′G′.

Hence,
G′ = VV′G′ = (VV′)G′,

from which it follows that VV′ is the identity matrix. However,
since det(V) and det(V′) are integers and the determinant function
is multiplicative, we have det(V) det(V′) = 1. Thus det(V) is a unit
in Z and so V is unimodular.

For “⇐”: Assume that G′ = UG for a unimodular matrix U, let Λ
be generated by G and let Λ′ be generated by G′. An element
λ′ ∈ Λ′ can be written, for some c ∈ Zn as
λ′ = cG′ = cUG = c′G ∈ Λ, which shows, since c′ = cU ∈ Zn, that
Λ′ ⊆ Λ. On the other hand, we have G = U−1G′ and a similar
argument shows that Λ ⊆ Λ′.
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Lattice Determinant

Definition

The determinant, det(Λ), of a full-rank lattice Λ is given as

det(Λ) = | det(GΛ)|

where GΛ is any generator matrix for Λ.

• Note that, in view of the previous theorem, this is an invariant
of the lattice Λ, i.e., the determinant of Λ is independent of the
choice of GΛ.

• As we will now see, this invariant has a geometric significance.
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Fundamental Region

Definition

A set R ⊆ Rn is called a fundamental region of a lattice Λ ⊆ Rn if
the following conditions are satisfied:

1 Rn =
⋃

λ∈Λ(λ +R).

2 For every λ1,λ2 ∈ Λ with λ1 6= λ2, (λ1 +R) ∩ (λ2 +R) = ∅.

In other words, the translates of a fundamental region R by lattice
points form a disjoint covering (or tiling) of Rn.

• A fundamental region R cannot contain two points x1 and x2

whose difference is a nonzero lattice point, since if
x1 − x2 = λ ∈ Λ, λ 6= 0, for x1, x2 ∈ R, we would have
x1 ∈ 0 +R and x1 = x2 +λ ∈ λ+R, contradicting Property 2.

• Algebraically, the points of a fundamental region form a
complete system of coset representatives of the cosets of Λ in
Rn.

14



Fundamental Regions for Λ((1/2, 2/3), (1/2,−2/3))

• Each shaded fundamental region serves as a tile; the union of
translates of a tile by all lattice points forms a disjoint covering
of R2.

• Fundamental regions need not be connected sets.
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Fundamental Parallelepiped

Definition

The fundamental parallelepiped of a generating set
g1, . . . , gn ∈ Rn for a lattice Λ is the set

P(g1, . . . , gn) ,

{
n∑

i=1

aigi : (a1, . . . , an) ∈ [0, 1)n

}
.

0

g1

g2
0

g1

g2

P
((

1
2 ,

2
3

)
,
(

1
2 ,−

2
3

))
P
((

3
2 ,

2
3

)
, (1, 0)

)
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Their Volume = det(Λ)

Proposition

Given a lattice Λ, the fundamental parallelepiped of every generating
set for Λ has the same volume, namely det(Λ).

Proof: Let g1, . . . , gn form the rows of a generator matrix G. Then,
by change of variables,

Vol(P(g1, . . . , gn)) = Vol({aG : a ∈ [0, 1)n})
= Vol([0, 1)n) · | det(G)|
= | det(G)|
= det(Λ)
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All Fundamental Regions Have the Same Volume

Proposition

More generally, every fundamental region R of Λ has the same
volume, namely det(Λ).

Proof (by picture): Proof (by mapping): translate each point of R
by some lattice vector to a unique point of P.
Partition R into “pieces” R1,R2, . . . translated
by the same vector. If the pieces each have a
well-defined volume, then
Vol(R) =

∑
i Vol(Ri ), and the result follows

since volume is translation invariant and the
union of the translated pieces is P.
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Voronoi Region

Definition

Given a lattice Λ ⊆ Rn and a point λ ∈ Λ, a Voronoi region of λ is
defined as

V(λ) = {x ∈ Rn : ∀λ′ ∈ Λ,λ′ 6= λ, ‖x− λ‖ ≤ ‖x− λ′‖},

where ties are broken systematically.

The Voronoi region of 0 is often
called the Voronoi region of the
lattice and it is denoted by V(Λ).
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Nearest-Neighbor Quantizer

Definition

A nearest neighbor quantizer Q(NN)
Λ : Rn → Λ associated with a

lattice Λ maps a vector to the closest lattice point

Q(NN)
Λ (x) = arg min

λ∈Λ
‖x− λ‖,

where ties are broken systematically.

• The inverse image

[Q(NN)
Λ ]−1(λ) is a Voronoi

region of λ.

• Q(NN)
Λ (x) may be difficult to

compute for arbitrary x ∈ Rn.
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Minimum Distance

Definition

The minimum distance of a lattice Λ ⊆ Rn is defined as

dmin(Λ) = min
λ∈Λ∗

‖λ‖.

d m
in

(Λ
) Fact:

dmin(Λ) > 0

Proof: exercise.
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Successive Minima

Recall that Br denotes the n-dimensional ball of radius r centered at
the origin: Br , {x ∈ Rn : ‖x‖ ≤ r}.

Definition

For a lattice Λ ⊂ Rn, let

Li (Λ) , min{r : Br contains at least i linearly indep. lattice vectors}.

Then L1 ≤ L2 ≤ . . . ≤ Ln are the successive minima of Λ.

• We have L1(Λ) = dmin(Λ).

• Note that Ln(Λ) contains n linearly
independent lattice vectors by definition,
but these may not generate Λ! (Example:
2Z5 ∪ (1, 1, 1, 1, 1) + 2Z5 has
L1 = · · · = L5 = 2, but the 5 linearly
independent vectors in B2 generate only
2Z5.)

Here L2 > L1
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A Quick Recap

As subgroups of Rn, lattices have both algebraic and geometric
properties.

• Algebra: closed under subtraction (forms a subgroup)

• Geometry: fundamental regions (fundamental parallelepiped,
Voronoi region), (positive) minimum distance, successive
minima

• Because lattices have positive minimum distance, they are
discrete subgroups of Rn, i.e., surrounding the origin is an
open ball containing just one lattice point (the origin itself).

• The converse is also true: a discrete subgroup of Rn is
necessarily a lattice.
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Dual Lattice

Definition

The dual of a full-rank lattice Λ ⊂ Rn is the set

Λ⊥ = {x ∈ Rn : ∀λ ∈ Λ, 〈x,λ〉 ∈ Z},

i.e., the set of vectors in Rn having integral inner-product with every
lattice vector.

Fact

If Λ has generator matrix G ∈ Rn×n, then Λ⊥ has generator matrix
(G−1)T , where the inverse is taken in Rn×n.

Theorem

det(Λ) · det(Λ⊥) = 1.

Proof: follows from the fact that det(G−1) = (det G)−1.
Remark: the generator matrix for Λ⊥ serves as a parity-check
matrix for Λ. 24



Nested Lattices

Definition

A sublattice Λ′ of Λ is a subset of Λ, which itself is a lattice. A pair
of lattices (Λ,Λ′) is called nested if Λ′ is a sublattice of Λ.

Λ is called the fine lattice
while Λ′ is called the
coarse lattice.
Λ′ ⊆ Λ
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Nested Lattices: Nesting Matrix

Let Λ and Λ′ have generator matrices GΛ and GΛ′ , respectively. If
Λ′ ⊆ Λ, every vector of Λ′ is generated as some integer linear
combination of the rows of GΛ.

Definition

In particular, the generator matrices GΛ′ and GΛ must satisfy

GΛ′ = JGΛ,

for some matrix J ∈ Zn×n, called a nesting matrix.

• Given GΛ and GΛ′ , J is unique.

• | det(J)| is an invariant: det(Λ′) = | det(J)| det(Λ)
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Nested Lattices: Diagonal Nesting

Theorem

Let Λ′ ⊂ Λ be a nested lattice pair. Then there exist generator
matrices GΛ and GΛ′ for Λ and Λ′, respectively, such that

GΛ′ = diag(c1, . . . , cn)GΛ

with c1 | c2 | · · · | cn.

Here c1, . . . , cn are the invariant factors of the nesting matrix.
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Smith Normal Form

The Smith normal form is a canonical form for matrices with entries
in a principal ideal domain (PID).

Definition

Let A be a nonzero m × n matrix over a PID. There exist invertible
m ×m and n × n matrices P,Q such that the product

PAQ = diag(r1, . . . , rk), k = min{m, n}

and the diagonal elements {ri} satisfy ri | ri+1 for 1 ≤ i < k . This
product is the Smith normal form of A.

The elements {ri} are unique up to multiplication by a unit and are
called the invariant factors of A.
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Diagonal Nesting Follows from Smith Normal Form

For some J ∈ Zn×n, let
GΛ′ = JGΛ.

Then, for some n × n unimodular matrices U and V, we have

UJV = D = diag(c1, c2, . . . , cn),

or, equivalently,
J = U−1DV−1.

Thus
GΛ′ = JGΛ = U−1DV−1GΛ

or
(UGΛ′) = D(V−1GΛ).
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Nested Lattices: Labels and Enumeration

With a diagonal nesting in which GΛ′ = JGΛ with
J = diag(c1, c2, . . . , cn), we get a useful labelling scheme for lattice
vectors in the fundamental parallelepiped of Λ′: each such point is
of the form

(a1, a2, . . . , an)GΛ

where
0 ≤ a1 < c1, 0 ≤ a2 < c2, . . . , 0 ≤ an < cn.

E.g., GΛ′ = diag(2, 4)GΛ

(0, 0)

(0, 1)

(0, 2)

(0, 3)

(1, 0)

(1, 1)

(1, 2)

(1, 3)

Note that there are det(J) =
∏n

i=1 ci labelled points.
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Nested Lattices: Linear Labelling

If we periodically extend the labels to all the lattice vectors, then
the labels are linear in Zc1 × Zc2 × · · · × Zcn , i.e.,

`(λ1 + λ2) = `(λ1) + `(λ2).

(0, 0)(0, 0) (0, 0)

(0, 1)(0, 1) (0, 1)

(0, 2)(0, 2) (0, 2)

(0, 3)(0, 3) (0, 3)

(1, 0)(1, 0) (1, 0)

(1, 1)(1, 1) (1, 1)

(1, 2)(1, 2) (1, 2)

(1, 3)(1, 3) (1, 3)

(0, 0)(0, 0) (0, 0)

(0, 1)(0, 1) (0, 1)

(1, 0)(1, 0) (1, 0)

(1, 1)(1, 1) (1, 1)

(0, 2)(0, 2) (0, 2)

(0, 3)(0, 3) (0, 3)

(1, 2)(1, 2) (1, 2)

(1, 3)(1, 3) (1, 3)

Stated more algebraically,

Λ/Λ′ ' Zc1 × Zc2 × · · · × Zcn .
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Complex Lattices

The theory of lattices extends to Cn, where we have many choices
for what is meant by an “integer.” Generally we take the ring R of
integers as a subring of C forming a principal ideal domain.
Examples:
• R = {a + bi : a, b ∈ Z} (Gaussian integers)
• R = {a + be2πi/3 : a, b ∈ Z} (Eisenstein integers)

Definition

Given m linearly independent (row) vectors g1, . . . , gm ∈ Cn, the
complex lattice Λ generated by them is defined as the set of all
R-linear combinations of the gi ’s:

Λ(g1, . . . , gm) ,

{
m∑
i=1

cigi : c1 ∈ R, c2 ∈ R, . . . , cm ∈ R

}
.

(In engineering applications, complex lattices are suited for QAM
modulation.)
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Part 2:
Packing, Covering,

Quantization, Modulation
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Balls in High Dimensions

Recall that Br = {x ∈ Rn : ‖x‖ ≤ r} is the n-dimensional ball of
radius r centered at the origin.

• B1 is the unit-radius ball

• Br = rB1 = {rx : x ∈ B1}
• Vol(Br ) = rn Vol(B1) , rnVn, where Vn is the volume of B1

• Easy to show that V1 = 2, V2 = π, V3 = 4
3π

• In general, Vn = πn/2

(n/2)! , where the factorial (n/2)! for odd n is

(n/2)! = Γ
(

1 +
n

2

)
=
√
π

1

2

3

2
· · · n

2
.

• In fact, Vn ≈ (2πe/n)n/2 and limn→∞ nV
2/n
n = 2πe.

34



Effective Radius of a Lattice

Definition

The effective radius of a lattice Λ is the radius of a ball of volume
det(Λ):

reff(Λ) =

(
det(Λ)

Vn

)1/n

.

r eff
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Sphere Packing

Definition

A lattice Λ ⊂ Rn is said to pack Br if

λ1,λ2 ∈ Λ,λ1 6= λ2 → (λ1 + Br ) ∩ (λ2 + Br ) = ∅.

The packing radius of Λ is

rpack(Λ) , sup{r : Λ packs Br}.
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Packing Efficiency

It is easy to see that rpack(Λ) is the inner radius
of the Voronoi region V(Λ), i.e., the radius of
the smallest (open) ball contained in V.
Clearly, rpack(Λ) ≤ reff(Λ), with equality if and
only if the Voronoi region itself is a ball.

r eff

rpack

Definition

The packing efficiency of a lattice Λ is

ρpack(Λ) =
rpack(Λ)

reff(Λ)
.

• Clearly, 0 < ρpack(Λ) ≤ 1.
• ρpack(Λ) is invariant to scaling, i.e., ρpack(αΛ) = ρpack(Λ) for

all α 6= 0.

• the packing density =
Vol

(
Brpack(Λ)

)
Vol(V(Λ)) = ρnpack(Λ)

37



Packing Efficiency (Cont’d)

• The densest 2-dimensional lattice is the hexagonal lattice with

efficiency
√
π/2
√

3 ≈ 0.9523

• The densest 3-dimensional lattice is the face-centered cubic

lattice with efficiency 3

√
π/3
√

2 ≈ 0.9047

• The densest lattices are known for all dimensions up to eight,
and in 24 dimensions, but are still unknown for most higher
dimensions. (cf 2016 breakthrough result of Maryna Viazovska
showing that E8 forms the densest packing in 8 dimensions,
and, with coauthors, that the Leech lattice Λ24 has the same
property in 24 dimensions.)

• The Minkowski-Hlawka Theorem guarantees that in each
dimension there exists a lattice whose packing efficiency is at
least 1/2:

max
Λ⊂Rn

ρpack(Λ) ≥ 1/2
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Sphere Covering

Definition

A lattice Λ ⊂ Rn is said to cover Rn with Br if⋃
λ∈Λ

(λ + Br ) = Rn.

The covering radius of Λ is

rcov(Λ) , min{r : Λ covers Rn with Br}.
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Covering Efficiency

It is easy to see that rcov(Λ) is the outer radius of the Voronoi region
V(Λ), i.e., the radius of the smallest (closed) ball containing V.

r eff
rcov

Definition

The covering efficiency of a lattice Λ is

ρcov(Λ) =
rcov(Λ)

reff(Λ)
.

• Clearly, ρcov(Λ) ≥ 1.
• ρcov(Λ) is invariant to scaling.
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Covering Efficiency (Cont’d)

• The best 2-dimensional covering lattice is the hexagonal lattice
with ρcov(Λ) ≈ 1.0996.

• The best 3-dimensional covering lattice is not the densest one:
it is the body-centered cubic lattice with ρcov(Λ) ≈ 1.1353.

• A result of Rogers shows that there exists a sequence of lattices
Λn of increasing dimension n such that ρcov(Λ)→ 1, as n→∞.
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Quantization

Definition

A lattice quantizer is a map QΛ : Rn → Λ for some lattice Λ ⊂ Rn.

• If we use the nearest-neighbor quantizer Q(NN)
Λ , then the

quantization error xe , x−Q(NN)
Λ (x) ∈ V(Λ).

• Suppose that xe is uniformly distributed over the Voronoi region
V(Λ), then the second moment per dimension is given as

σ2(Λ) =
1

n
E [‖xe‖2] =

1

n

1

det(Λ)

∫
V(Λ)
‖xe‖2dxe .

• Clearly, the smaller is σ2(Λ), the better is the quantizer.
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Quantization: Figure of Merit

Definition

A figure of merit of the nearest-neighbor lattice quantizer is the
normalized second moment, given as

G (Λ) =
σ2(Λ)

det(Λ)2/n
.

• G (Λ) is invariant to scaling.

• Let Gn denote the minimum possible value of G (Λ) over all
lattices in Rn. Then, since G (Zn) = 1/12, we have Gn ≤ 1/12.
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Quantization: Figure of Merit (Cont’d)

Q: What is a lower bound on Gn?

A: An n-dimensional ball of a given volume minimizes the second
moment. The corresponding quantity G ∗n is monotonically
decreasing with n, and approaches 1

2πe as n→∞. Hence

1

12
≥ Gn ≥ G ∗n >

1

2πe
.

• There exists a sequence of lattices Λn of increasing dimension n
such that G (Λn)→ 1

2πe , as n→∞.
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Modulation: AWGN channel

+x
input

y = x + z
output

z

An additive-noise channel is given by the input/output relation

y = x + z,

where the noise z is independent of the input x.
In the AWGN channel case, z is a white (i.i.d.) Gaussian noise with
zero mean and variance σ2 whose pdf is given by

fZ (z) =
1

(2πσ2)n/2
e−
‖z‖2

2σ2 .
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Modulation: Error Probability

Suppose that (part of) a lattice Λ is used as a codebook; then the
transmitted signal x ∈ Λ.
Since the pdf decreases monotonically with ‖z‖, given a received
vector y, it is natural to decode x as the closest lattice point:

x̂ = argλ∈Λ min ‖y − λ‖ = Q(NN)
Λ (y).

The error probability is thus defined as

Pe(Λ, σ2) , Pr[z /∈ V(Λ)]

• Pe(Λ, σ2) increases monotonically with the noise variance σ2

• For some target error probability 0 < ε < 1, let σ2(ε) = value
of σ2 such that Pe(Λ, σ2) is equal to ε.
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Modulation: Figure of Merit

Definition (Normalized volume to noise ratio)

The normalized volume to noise ratio of a lattice Λ, at a target
error probability Pe , 0 < Pe < 1, is defined as

µ(Λ,Pe) =
det(Λ)2/n

σ2(Pe)
.

• µ(Λ,Pe) is invariant to scaling.

• The lower, the better.
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Modulation: Figure of Merit (Cont’d)

• The minimum possible value of µ(Λ,Pe) over all lattices in Rn

is denoted by µn(Pe). Clearly, µn(Pe) ≤ µ(Zn,Pe).

Q: What is a lower bound on µn(Pe)?
A: An n-dimensional ball contains more probability mass of an
AWGN vector than any other body of the same volume. The
corresponding quantity µ∗n(Pe) is monotonically decreasing with n
for 0 < Pe < Pth

e ≈ 0.03, and it approaches 2πe, as n→∞, for all
0 < Pe < 1.

• Hence,
2πe < µ∗n(Pe) ≤ µn(Pe) ≤ µ(Zn,Pe).

• There exists a sequence of lattices Λn of increasing dimension n
such that for all 0 < Pe < 1, µ(Λn,Pe)→ 2πe, as n→∞.
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Fun Facts about Lattices (Lifted from the Pages of [Zamir,2014])

• The seventeenth century astronomer Johannes Kepler
conjectured that the face-centered cubic lattice forms the best
sphere-packing in three dimensions. While Gauss showed that
no other lattice packing is better, the perhaps harder part—of
excluding non-lattice packings—remained open until a full
(computer-aided) proof was given in 1998 by Hales.

• The optimal sphere packings in 2 and 3 dimensions are lattice
packings—could this be the case in higher dimensions as well?
This remains a mystery. (But not in dimensions 8 and 24!)

• The early twentieth century mathematician Hermann
Minkowski used lattices to relate n-dimensional geometry with
number theory—an area he called “the geometry of numbers.”
The Minkowski-Hlawka theorem (conjectured by Minkowski
and proved by Hlawka in 1943) will play the role of Shannon’s
random coding technique in Part 4.

• Some of the stronger (post-quantum) public-key algorithms
today use lattice-based cryptography.
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Part 3:
Lattices and Linear Codes
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Fields

Definition

Recall that a field is a triple (F,+, ·) with the properties that

1 (F,+) forms an abelian group with identity 0,

2 (F∗, ·) forms an abelian group with identity 1,

3 for all x , y , z ∈ F, x · (y + z) = (x · y) + (x · z), i.e.,
multiplication ‘·’ distributes over addition ‘+’.

Roughly speaking, fields enjoy all the usual familiar arithmetic
properties of real numbers, including addition, subtraction,
multiplication and division (by nonzero elements), the product of
nonzero elements is nonzero, etc.

• R and C form (infinite) fields under real and complex
arithmetic, respectively.

• Z does not form a field (since most elements don’t have
multiplicative inverses).
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Finite Fields

Definition

A field with a finite number of elements is called a finite field.

• Fp = {0, 1, . . . , p − 1} forms a field under integer arithmetic
modulo p, where p is a prime.

• Zm = {0, 1, . . . ,m − 1} does not form field under integer
arithmetic modulo m, when m is composite, since if m = ab
with 1 < a < m then ab = 0 mod m, yet a and b are nonzero
elements of Zm. Such “zero divisors” cannot be present in a
field.

The following facts are well known:
• A q-element finite field Fq exists if and only if q = pm for a

prime integer p and a positive integer m. Thus there are finite
fields of order 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, . . ., but none of order
6, 10, 12, 14, 15, . . ..

• Any two finite fields of the same order are isomorphic; thus we
refer to the finite field Fq of order q.
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The Vector Space Fn
q

The set of n-tuples

Fn
q = {(x1, . . . , xn) : x1 ∈ Fq, . . . , xn ∈ Fq}

forms a vector space over Fq with

1 vector addition defined componentwise

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn)

2 scalar multiplication defined, for any scalar a ∈ Fq and any
vector x ∈ Fn

q, via ax = (ax1, . . . , axn).

• Any subset of C ⊆ Fn
q forming a vector space under the

operations inherited from Fn
q, is called a subspace of Fn

q.

• A set of vectors {v1, . . . , vk} ⊆ Fn
q is called linearly

independent if the only solution to the equation
0 = a1v1 + · · ·+ anvn in unknown scalars a1, . . . , an is the
trivial one (with a1 = · · · = an = 0).
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Dimension

• If C is a subspace of Fn
q, then the number of elements in any

maximal subset of C of linearly independent vectors is an
invariant called the dimension of C .

• For example, Fn
q has dimension n.

• If C is a subspace of Fn
q of dimension k , then 0 ≤ k ≤ n.
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Linear Block Codes over Fq

Definition

An (n, k) linear code over Fq is a k-dimensional subspace of Fn
q.

The parameter n is called the block length, and k is the
dimension. The elements of a code are called codewords. For
example, {000, 111} is a (3,1) linear code over F2.

Let B = {g1, . . . , gk} be a maximal linearly independent subset of
an (n, k) linear code C . Then B is a basis having the property that
each element v of C has a unique representation as a linear
combination

v =
k∑

i=1

aigi

for some scalars a1, . . . , ak ∈ Fq.

By counting the number of distinct choices for a1, . . . , ak , we find
that an (n, k) linear code over Fq has qk codewords.
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Generator Matrices

Definition

A generator matrix for an (n, k) linear code C over Fq is a matrix
G ∈ Fk×n

q given as

G =


g1
g2
...

gk


where {g1, . . . , gk} is any basis for C .

The code C itself is then the row space of G, i.e.,

C = {uG : u ∈ Fk
q},

and G is said to generate C .
Two different generator matrices G1 and G2 generate the same code
C if G2 = UG1 for some invertible matrix U ∈ Fk×k , or equivalently
if G2 can be obtained from G1 by a sequence of elementary row
operations.
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Systematic Form

A canonical generator matrix for a code C is obtained (using
Gauss-Jordan elimination) by reducing any generator matrix G of C
to its unique reduced row echelon form GRREF.

In some cases, GRREF takes the form, called systematic form,

GRREF =
[

Ik P
]

where Ik is the k × k identity matrix, and P is some k × (n − k)
matrix.

If v = uG, with G in systematic form, then v = (u,uP).

When G used as an encoder, mapping a message u to a codeword
v = uG, then, when G is in systematic form, the message u appears
in the first k positions of every codeword.

(More generally, if GRREF is used as an encoder, the components of
the message u appears in k fixed locations, corresponding to the
pivot columns of GRREF, of every codeword.)
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Dual Codes

We may define an “inner-product” in Fn
q via 〈x, y〉 =

∑n
i=1 xiyi .

Definition

The dual C⊥ of a linear code C over Fq is the set

C⊥ = {v ∈ Fn
q : ∀c ∈ C , 〈v, c〉 = 0}.

• The dual of an (n, k) linear code is an (n, n − k) linear code.

• A generator matrix H for C⊥ is called a parity-check matrix
for C and must satisfy GHT = 0k×(n−k) for every generator
matrix G of C .

• Equivalently, we may write

C = {c ∈ Fn
q : cHT = 0},

displaying C as the k-dimensional solution space of a system of
n − k homogenous equations in n unknowns.
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Computing H from G

When C has a generator matrix G in systematic form

G =
[

I P
]

then it is easy to verify (by multiplication) that

H =
[
−PT I

]
is a parity-check matrix for C .
More generally, any given G can be reduced to GRREF. If P is the
matrix obtained from GRREF by deleting its pivot columns, then a
parity-check matrix H is obtained by distributing the columns of
−PT (in order) among the k columns corresponding to pivots of
GRREF, and distributing the columns of the identity matrix In−k (in
order) among the remaining columns.
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Error-Correcting Capability under Additive Errors

Let C be a linear (n, k) code over Fq. Let E ⊂ Fn
q be a general set

of error patterns, and suppose that when c ∈ C is sent, an adversary
may add any vector e ∈ E , so that y = c + e is received.

+c
input

y = c + e
output

e ∈ E

When c1 ∈ C is sent, the adversary can cause confusion at the
receiver (more than one possible explanation for y) if and only if
there are error patterns e1, e2 ∈ E and another codeword c2 ∈ C ,
c2 6= c1, satisfying

c1 + e1 = c2 + e2 ⇔ c1 − c2 = e2 − e1

Since C is linear, c1 − c2 is in C ∗ and hence the adversary can cause
confusion if and only if E contains two error patterns whose
difference is a nonzero codeword.
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Error-Correcting Capability (cont’d)

Theorem

Let E ⊂ Fn
q be a set of error patterns and let

∆E = {e1 − e2 : e1, e2 ∈ E}. An adversary restricted to adding
patterns of E to codewords of a linear code C cannot cause
confusion at the receiver if and only if ∆E ∩ C ∗ = ∅.

Example: if E consists of the all-zero pattern and all patterns of
Hamming weight one, then ∆E consists of the all-zero pattern and
all patterns of Hamming weight one or two. Thus a linear code C is
single-error-correcting if and only if it contains no nonzero
codewords of weight smaller than 3.
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Linear Codes: A Quick Summary

A linear (n, k) code over the finite field Fq is a k-dimensional
subspace of Fn

q. Such a code C is specified by giving:

• a generator matrix G whose rows form a basis for C ; or

• a parity-check matrix H whose rows form a basis for the dual
code C⊥.

Then
C = {uG : u ∈ Fk

q} = {c ∈ Fn
q : cHT = 0}.

Every (n, k) linear code over Fq contains qk distinct codewords.
A linear code C can correct every additive error pattern in a set E if
and only if ∆E ∩ C ∗ = ∅, where ∆E = {e1 − e2 : e1, e2 ∈ E}.
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From Codes to Lattices: Construction A

Definition

The modulo-p-reduction of an integer vector
v = (v1, . . . , vn) ∈ Zn is the vector

v mod p = (v1 mod p, . . . , vn mod p) ∈ Fn
p

where Fn
p = {0, 1, . . . , p − 1} and s mod p = r if s = qp + r with

0 ≤ r < p. [Here we think of r simultaneously as an integer residue
and as an element of Fp, with the obvious correspondence.]

Definition (Modulo-p Lattices)

The Construction A lifting of a linear (n, k) code C over Fp is the
lattice

ΛC = {x ∈ Zn : x mod p ∈ C};

such a lattice is sometimes called a modulo-p lattice.
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Properties

Properties of a modulo-p lattice ΛC :

1 pZn ⊆ ΛC ⊆ Zn.

2 For a linear (n, k) code C over Fp, det(ΛC ) = pn−k .

3 Let G be a generator matrix of C and In be the n × n identity
matrix, then ΛC is spanned by the extended n × (n + k)
generator matrix

GΛC
=

[
G
pIn

]
. (1)

4 If the generator matrix G is of the systematic form
G = [Ik Pk×(n−k)], then the extended generator matrix (1) can
be reduced to a standard n × n generator matrix for ΛC

GΛC
=

[
Ik Pk×(n−k)

0 pIn−k

]
.
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Nested Construction A

Consider two linear codes C1,C2 over Fp with C2 ⊂ C1. By lifting
the nested codes to Rn using Construction A, we generate nested
Construction A lattices

ΛC1 = {x ∈ Zn | x mod p ∈ C1}, and

ΛC2 = {x ∈ Zn | x mod p ∈ C2}.
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Properties

Properties of nested-Construction-A lattices ΛC1 ,ΛC2 :

1 pZn ⊆ ΛC2 ⊂ ΛC1 ⊆ Zn.

2 Let Ci be a linear (n, ki ) code over Fp, then det(ΛCi
) = pn−ki .

3 There exist generator matrices GΛC1
and GΛC2

such that

GΛC2
= diag(1, . . . , 1, p, . . . , p︸ ︷︷ ︸

k1−k2

)GΛC1

Property 3 is an example of the “diagonal nesting” theorem of Part
1, which follows from the Smith normal form of the nesting matrix J
that relates GΛC2

and GΛC1
. Used is the fact that det(J) = pk1−k2 ,

which forces the invariant factors of J to be (1, 1, . . . , 1, p, p, . . . , p).
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Other Constructions

• A myriad of other constructions for lattices exist; see Conway
and Sloane’s SPLAG for Construction B and Construction D.

• There are a host of number-theoretic constructions for lattices
(some of them useful in space-time coding); see papers by J.-C.
Belfiore, E. Viterbo, M. O. Damen, among many others.

• There are so-called “low-density lattice codes”; see papers by
N. Sommer, M. Feder, O. Shalvi, and others.

For our purposes in this tutorial, Construction A will suffice.
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Part 4:
Asymptopia
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Balanced Families

Definition

A family B of (n, k) linear codes over a finite field F is called
balanced if every nonzero vector in Fn appears in the same number,
NB , of codes from B.

For example, the set of all linear (n, k) codes is a balanced family.

...
...

degree NB degree qk − 1


qn − 1 nonzero

vectors
|B| codes

· · ·

· · ·

Edge balance: (qn − 1)NB = (qk − 1)|B|
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Basic Averaging Lemma

Basic averaging lemma

Let f : Fn
q → C be an arbitrary complex-valued function. Then

1

|B|
∑
C∈B

∑
w∈C∗

f (w) =
qk − 1

qn − 1

∑
v∈(Fn

q)∗

f (v). (2)

Proof: Label each edge of the bipartite graph incident on circular
node v with f (v). Summing the labels over all edges incident on
circular nodes is equivalent to summing over all edges incident on
square nodes, which implies that

NB

∑
v∈(Fn

q)∗

f (v) =
∑
C∈B

∑
w∈C∗

f (w).

Then (2) follows by substituting for NB from the edge-balance
condition.
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First Application: Gilbert-Varshamov-like Bound

Let A ⊂ Fn
q be given, and, for v ∈ (Fn

q)∗, define

f (v) =

{
1 if v ∈ A,

0 otherwise.

Then ∑
v∈(Fn

q)∗

f (v) = |A∗| and
∑

w∈C∗
f (w) = |C ∗ ∩ A|︸ ︷︷ ︸

intersection count

,

for any code C of length n.
The basic averaging lemma for any balanced family B of (n, k)
linear codes gives

1

|B|
∑
C∈B
|C ∗ ∩ A|︸ ︷︷ ︸

avg. intersection count

=
qk − 1

qn − 1
|A∗|
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First Application (cont’d)

Now if
qk − 1

qn − 1
|A∗| < 1

then the average intersection count is < 1. But since |C ∗ ∩ A| is an
integer, this would mean that B contains at least one code with
C ∗ ∩ A = ∅.
• Setting A = ∆E , we see that if qk−1

qn−1 |∆E ∗| < 1, or more
loosely if

|∆E | < qn−k ,

then B contains at least one (n, k) linear code that can correct
all additive errors in a set E .

• For example setting E to a Hamming ball yields (essentially)
the Gilbert-Varshamov bound.
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Constructing mod-p Lattices of Constant Volume

It is natural to construct a family of lattices in fixed dimension n,
with a fixed determinant Vf , using lifted (n, k) codes with fixed k ,
where 0 < k < n. Free parameter: p.

Unscaled Construction A, lifting code C over Fp, gives

pZn︸︷︷︸
det=pn

⊂ ΛC︸︷︷︸
det=pn−k

⊂ Zn︸︷︷︸
det=1

We scale everything by γ > 0, where γnpn−k = Vf (†).

• From (†), as p →∞ we must have γ → 0.

• Since (γp)n = pkVf , we have γp →∞ as p →∞.

After scaling by γ we have:

γpZn︸ ︷︷ ︸
det=(γp)n→∞

⊂ γΛC︸︷︷︸
det=Vf

⊂ γZn︸︷︷︸
det=γn→0
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Example: Lifting 〈(1, 1)〉 mod p with fixed Vf

p = 2 p = 3

p = 5 p = 23

Yellow-shaded region: V(γpZ2)

γp/2

-γp/2

γp/2

-γp/2

General case
As p →∞:

• fine lattice γZn grows
increasingly “fine”

• Voronoi region of
coarse lattice γpZn

grows increasingly
large
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Minkowski-Hlawka Theorem

Minkowski-Hlawka Theorem

Let f be a Riemann integrable function Rn → R of bounded support
(i.e., f (v) = 0 if ‖v‖ exceeds some bound). For 0 < k < n, let Bp
be a balanced family of linear (n, k) codes over Fp. Then, for any
fixed Vf , the approximation

1

|Bp|
∑
C∈Bp

∑
w∈γΛ∗C

f (w) ≈ V−1
f

∫
Rn

f (v)dv

becomes exact in the limit as p →∞, γ → 0 with γnpn−k = Vf

fixed.
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Minkowski-Hlawka Theorem: A Proof

Let V be the Voronoi region of γpZn. Then, when p is sufficiently
large (so that supp(f ) ⊆ V),

1

|Bp|
∑
C∈Bp

∑
w∈γΛ∗C

f (w) =
1

|Bp|
∑
C∈Bp

∑
w∈(γΛC∗∩V)

f (w) supp(f ) ⊆ V

=
pk − 1

pn − 1

∑
v∈((γZn)∗∩V)

f (v) averaging lemma

=
pk − 1

pn − 1
γ−n

∑
v∈((γZn)∗∩V)

f (v)γn multiply by unity

→ pk−nγ−n
∫
Rn

f (v)dv sum → integral

= V−1
f

∫
Rn

f (v)dv.
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Minkowski-Hlawka Theorem: Equivalent Form

Theorem

Let E be a bounded subset of Rn that is Jordan-measurable (i.e.,
Vol(E ) is the Riemann integral of the indicator function of E ); let k
be an integer such that 0 < k < n and let Vf be a positive real
number. Then the approximation

1

|Bp|
∑
C∈Bp

|γΛ∗C ∩ E | ≈ Vol(E )/Vf

where Bp is any balanced family of linear (n, k) codes over Fp,
becomes exact in the limit p →∞, γ → 0 with γnpn−k = Vf fixed.

Proof of “⇒ ”: Let f be the indicator function for E (i.e., f (v) = 1
if v ∈ E and f (v) = 0 otherwise). (The other direction is left as an
exercise.)
Note: if Vol(E )/Vf < 1 then there exists a lattice Λ with
det(Λ) = Vf and |Λ∗ ∩ E | = 0.
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“Good” Lattices

To illustrate the application of the Minkowski-Hlawka Theorem, we
now show that “good” lattices exist for packing and modulation in
n dimensions (existence) and that, as n→∞, a random choice
(from an appropriate ensemble) is highly likely to be good
(concentration).
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Goodness for Packing

Theorem

For any n > 1 and any ε > 0, there exists a lattice Λn of dimension
n such that

ρpack(Λn) =
rpack(Λn)

reff(Λn)
≥ 1

2(1 + ε)
.
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Lower Bound on Packing Radius

|Λ∗ ∩ Br | = 0⇒ dmin(Λ) ≥ r ⇒ rpack(Λ) ≥ r/2

d m
in

(Λ
)

r

Λ∗

Br
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Goodness for Packing: A Proof

For any n > 1 and any ε > 0, let Br be the ball with

Vol(Br ) = rnVn = Vf /(1 + ε)n < Vf .

Then,
1

|B|
∑
C∈B
|γΛ∗C ∩ Br | → Vol(Br )/Vf < 1.

Hence, there exists a lattice Λn with |Λ∗n ∩ Br | = 0. This means that

rpack(Λn) ≥ r/2.

On the other hand, reff(Λn) = n
√

Vf /Vn = r(1 + ε). Hence,

ρpack(Λn) =
rpack(Λn)

reff(Λn)
≥ 1

2(1 + ε)
.
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From Existence to Concentration

Concentration for Large n

Let Λn be a random lattice of dimension n uniformly distributed
over {γΛ∗C | C ∈ B}. Then,

Pr[Λn is good for packing]→ 1,

as n→∞.

Proof: Recall that 1
|B|
∑

C∈B |γΛ∗C ∩ Br | → (1/(1 + ε))n, as p →∞.

Consider the random variable |Λ∗n ∩ Br |, where Λn is uniform over
{γΛ∗C | C ∈ B}. By Markov’s inequality,

Pr[|Λ∗n ∩ Br | ≥ 1] ≤ E [|Λ∗n ∩ Br |]
1

=
1

|B|
∑
C∈B
|γΛ∗C ∩ Br |.

Hence, Pr[|Λ∗n ∩ Br | ≥ 1]→ 0, as n→∞.
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Goodness for Modulation

Recall that the normalized volume to noise ratio of a lattice Λ, at
a target error probability Pe , 0 < Pe < 1, is defined as

µ(Λ,Pe) =
det(Λ)2/n

σ2(Pe)
.

Theorem

There exists a sequence of lattices Λn such that for all 0 < Pe < 1,
µ(Λn,Pe)→ 2πe, as n→∞.
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(Suboptimal) Decoding Rule

Consider a specific (non-random) lattice Λ.
Fix a decoding radius r . Given y ∈ Rn, decode to a lattice point
λ ∈ Λ if

1 ‖y − λ‖ ≤ r , and

2 no other lattice point λ′ ∈ Λ, λ′ 6= λ, satisfies ‖y − λ′‖ ≤ r ;

otherwise, declare an error.
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Upper Bound on the Error Probability

For a specific (non-random) lattice Λ, the error probability Pe(Λ) is
upper bounded by

Pe(Λ) ≤ Pr[z /∈ Br ] +

∫
Br

fr (v)|Λ∗ ∩ (v + Br )|dv ,

where fr (v) = fz(v | {z ∈ Br}) is the conditional pdf.

r
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Average Error Probability P̄e

P̄e ,
1

|B|
∑
C∈B

Pe(γΛC )

≤ Pr[z /∈ Br ] +
1

|B|
∑
C∈B

∫
Br

fr (v)|(γΛC )∗ ∩ (v + Br )| dv

= Pr[z /∈ Br ] +

∫
Br

fr (v)

(
1

|B|
∑
C∈B
|(γΛC )∗ ∩ (v + Br )|

)
dv

→ Pr[z /∈ Br ] +

∫
Br

fr (v) (Vol(Br )/Vf )dv

= Pr[z /∈ Br ] + Vol(Br )/Vf

The typical “noise radius” rnoise =
√
nσ2.

Claim:

If rnoise = reff
1+ε for some ε > 0, then P̄e → 0, as n→∞.
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Average Error Probability P̄e (Cont’d)

Proof of the Claim: On the last slide we had

P̄e ≤ Pr[z /∈ Br ] + Vol(Br )/Vf .

If rnoise = reff/(1 + ε), then there exist ε1, ε2 > 0 such that

rnoise =
reff

(1 + ε1)(1 + ε2)
.

Now, we set r = reff/(1 + ε1). Then rnoise = r/(1 + ε2),

Vol(Br )

Vf
=

(
r

reff

)n

=

(
1

1 + ε1

)n

, and

Pr[z /∈ Br ] = Pr[‖z‖ > r ]

= Pr[‖z‖2/n > r2/n]

= Pr[‖z‖2/n > σ2(1 + ε2)2].

Note that both terms → 0, as n→∞.
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Goodness for Modulation: A Proof

Recall that the normalized volume to noise ratio

µ(Λ,Pe) =
det(Λ)2/n

σ2(Pe)
.

For any target error probability δ > 0, if we set rnoise = reff/(1 + ε)
for some ε > 0, then P̄e ≤ δ for sufficiently large n. Hence, there
exists a lattice Λn with Pe(Λn) ≤ δ and σ2(δ) ≥ r2

noise/n.

Therefore,

µ(Λn, δ) =
V

2/n
f

σ2(δ)
≤

V
2/n
f

r2
noise/n

= nV
2/n
n

r2
eff

r2
noise

→ 2πe(1 + ε)2.

The theorem follows because we can make ε arbitrarily small.
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From Existence to Concentration

Concentration for Large n

Let Λn be a random lattice of dimension n uniformly distributed
over {γΛ∗C | C ∈ B}. Then,

Pr[Λn is good for modulation]→ 1,

as n→∞.

Proof: For any target error probability δ > 0 and any large L > 0, if
we set rnoise = reff/(1 + ε) for some ε > 0, then P̄e ≤ δ/L for
sufficiently large n.
Consider the random variable Pe(Λn), where Λn is uniform over
{γΛ∗C | C ∈ B}. By Markov’s inequality,

Pr[Pe(Λn) ≥ δ] ≤ E [Pe(Λn)]

δ
=

P̄e

δ
≤ 1

L
.

Hence, with probability at least 1− 1/L, Λn has Pe(Λn) ≤ δ and
σ2(δ) ≥ r2

noise/n.
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Simultaneous Goodness

Theorem

Let Λn be a random lattice of dimension n uniformly distributed
over {γΛ∗C | C ∈ B}. Then for any 0 < Pe < 1 and any ε > 0,

Pr

[
ρpack(Λn) ≥ 1

2(1 + ε)
and µ(Λn,Pe) ≤ 2πe(1 + ε)

]
→ 1

as n→∞.

Proof: a union-bound argument.
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Goodness of Nested Lattices

• Previously, the use of the Minkowski-Hlawka Theorem, together
with a balanced family of linear codes, proves the existence and
concentration of “good” lattices.

• This naturally extends to nested lattices, if nested Construction
A is applied to some appropriate linear-code ensemble.

• For example, let B be the set of all linear (n, k) codes, and let
B′ be the set of all linear (n, k ′) codes with k ′ < k . Then, for
all possible linear codes C1 ∈ B,C2 ∈ B′ with C2 ⊂ C1, we
generate corresponding nested-Construction-A lattices ΛC1 and
ΛC2 .

• This ensemble allows us to prove the existence and
concentration of “good” nested lattices for packing and
modulation.
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Nested Lattices Good for (Almost) Everything

In fact, with a refined argument, one can prove that, with high
probability, both Λn and Λ′n are simultaneously good for packing,
modulation, covering, and quantization.

Remark 1: goodness for covering implies goodness for quantization
Remark 2: in order to prove goodness for covering, we need some
constraints on k and k ′ of the underlying linear codes. This is
beyond the scope of this tutorial.
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Practical Ensembles of Lattices

For linear codes, practical ensembles include Turbo codes, LDPC
codes, Polar codes, Spatially-Coupled LDPC codes.

What about their lattice versions?

• LDPC Lattices: M-R. Sadeghi, A. H. Banihashemi, and D.
Panario, 2006

• Low-Density Lattice Codes: N. Sommer, M. Feder, and O.
Shalvi, 2008

• Low-Density Integer Lattices: N. Di Pietro, J. J. Boutros, G.
Zémor, and L. Brunel, 2012

• Turbo Lattices: A. Sakzad, M.-R. Sadeghi, and D. Panario,
2012

• Polar Lattices: Y. Yan, C. Ling, and X. Wu, 2013

• Spatially-Coupled Low-Density Lattices: A. Vem, Y.-C. Huang,
K. Narayanan, and H. Pfister, 2014
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Towards a Unified Framework

A unified framework

It is possible to generalize the balanced families to “almost
balanced” families so that goodness of some (practical) linear codes
over Fp implies goodness of lattices.

For goodness of linear LDPC codes, see, e.g.,

• U. Erez and G. Miller. The ML decoding performance of LDPC
ensembles over Zq. IEEE Trans. Inform. Theory,
51:1871–1879, May 2005.

• G. Como and F. Fagnani. Average spectra and minimum
distances of LDPC codes over abelian groups. SIAM J.
Discrete Math., 23:19–53, 2008.

• S. Yang, T. Honold, Y. Chen, Z. Zhang, and P. Qiu. Weight
distributions of regular LDPC codes over finite fields. IEEE
Trans. Inform. Theory, 57:7507–7521, Nov. 2011.
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Nested Lattice Codes — Voronoi Constellations

For Λ′ ⊂ Λ, define a finite codebook—a Voronoi constellation—via
Λ ∩ V(Λ′).

• Λ is the “fine lattice”

• Λ′ is the “shaping lattice”

• The points of the
constellation are coset
representatives of Λ/Λ′; it
is often convenient to
have a “linear labelling”
achieved via diagonal
nesting.
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Encoding

Encoding is convenient when we have diagonal nesting (as is always
possible), and

GΛ′ = diag(c1, c2, . . . , cn)GΛ

Then we encode a message m ∈ Zc1 × Zc2 × · · · × Zcn to mGΛ,
subtracting the nearest point of Λ′, i.e.,

m 7→ mGΛ mod Λ′ , mGΛ −Q
(NN)
Λ′ (mGΛ).

The result is always a point in V(Λ′).
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Encoding with a Random Dither

Let u be continuously and uniformly distributed over V(Λ′). (In
transmission applications, u is pseudorandom and known to both
transmitter and receiver.) We add u to λ ∈ Λ prior to implementing
the mod Λ′ operation.
Purpose of dither: to control the average power
Let

x = [λ + u] mod Λ′

= λ + u−QNN
Λ′ (λ + u)

Clearly, x ∈ V(Λ′), and we will now show that in fact x is uniformly
distributed and hence has

1

n
E [‖x‖2] = σ2(Λ′).
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The Role of the Random Dither

Crypto Lemma

If the dither u is uniform over the Voronoi region V(Λ′) and
independent of λ, then x = [λ + u] mod Λ′ is uniform over V(Λ′),
independent of λ.

Hence, 1
nE [‖x‖2] = σ2(Λ′).

In practice one often uses a non-random dither chosen to achieve a
transmitted signal with zero mean.
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Decoding

A sensible (though suboptimal) decoding rule at the output of a
Gaussian noise channel:

• Given y, map y − u to the nearest point of the fine lattice Λ.

• Reduce mod Λ′ if necessary.

λ̂ = QNN
Λ (y − u) mod Λ′

Understanding the decoding: Let λ′ = QNN
Λ′ (λ + u). Then,

y − u = x + z− u

= λ + u− λ′︸ ︷︷ ︸
x

+z− u

= λ + z− λ′

Hence, λ̂ = λ if and only if QNN
Λ (z) ∈ Λ′. Therefore,

Pr[λ̂ 6= λ] = Pr[QNN
Λ (z) /∈ Λ′] ≤ Pr[QNN

Λ (z) 6= 0] = Pr[z /∈ V(Λ)].
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Rate

R =
1

n
log2

det(Λ′)

det(Λ)
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Rate versus SNR

R =
1

n
log2

det(Λ′)

det(Λ)

=
1

2
log2

(
det(Λ′)2/n

det(Λ)2/n

)

=
1

2
log2

(
σ2(Λ′)/G (Λ′)

σ2(Pe) · µ(Λ,Pe)

)
=

1

2
log2

(
σ2(Λ′)

σ2(Pe)

)
− 1

2
log2

(
G (Λ′) · µ(Λ,Pe)

)
=

1

2
log2

(
P

N

)
− 1

2
log2

(
2πeG (Λ′)

)
︸ ︷︷ ︸

shaping loss

− 1

2
log2

(
µ(Λ,Pe)

2πe

)
︸ ︷︷ ︸

coding loss

.
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Summary of Nested Lattice Codes

For a specific nested lattice code with Λ′ ⊂ Λ,

R =
1

2
log2

(
P

N

)
− 1

2
log2

(
2πeG (Λ′)

)
︸ ︷︷ ︸

shaping loss

− 1

2
log2

(
µ(Λ,Pe)

2πe

)
︸ ︷︷ ︸

coding loss

.

If Λ′ is good for quantization (i.e., G (Λ′)→ 1
2πe ) and Λ is good for

modulation (i.e., µ(Λ,Pe)→ 2πe), then both losses → 0.

Recall that G (Zn) = 1/12. Hence, the uncoded transmission has a
shaping loss of 1

2 log2(2πe/12) ≈ 0.254.

Compared to R = 1
2 log2

(
1 + P

N

)
, what about the “1+” term? –

see Part 5!
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Part 5:
Applications in

Communications
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Outline

1 AWGN Channel Coding

2 Dirty-Paper Coding

3 Two-Way Relay Channel

4 Compute-and-Forward

5 Successive Compute-and-Forward
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Outline

1 AWGN Channel Coding

2 Dirty-Paper Coding

3 Two-Way Relay Channel

4 Compute-and-Forward

5 Successive Compute-and-Forward

See appendix!
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AWGN Channel Coding

+x
input

y = x + z
output

z

y = x + z, where zi ∼ N (0,N), independent components, and
independent of x.
Average power constraint: 1

nE [‖x‖2] ≤ P.

CAWGN =
1

2
log2

(
1 +

P

N

)
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Key Intuition (Erez&Zamir’04)

Intuition: consider Y = X + Z , where X ∼ N (0, 1) and
Z ∼ N (0, 10). Taking Y as an estimate of X would give us an MSE
ten times larger than the variance of X !

If we use αY as an estimate, then the estimation error is

αY − X = α(X + Z )− X = (α− 1)X + αZ ,

with MSE(α) = (α− 1)2 · 1 + α2 · 10.

In fact, the optimal α∗ (i.e., the MMSE coefficient) is 1/11, and

MSE(α∗) = 110/121 < 1.

This shows the value of prior information!

Lesson Learned: we should use prior information in decoding!
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Encoding with a Random Dither

The encoding is the same as before.

x = [λ + u] mod Λ′

= λ + u−QNN
Λ′ (λ + u)

Clearly, x ∈ V(Λ′) and 1
nE [‖x‖2] = σ2(Λ′).
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Decoding with the MMSE Estimator

× + Q(NN)
Λ mod Λ′y

−uα

λ̂

λ̂ = QNN
Λ (αy − u) mod Λ′,

where α is the MMSE coefficient.

Note that when α = 1, it reduces to our previous case.
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Error Probability

Let λ′ = QNN
Λ′ (λ + u). Then,

αy − u = α(x + z)− u

= α(λ + u− λ′︸ ︷︷ ︸
x

+z)− u

= λ + (α− 1)(λ + u− λ′) + αz− λ′

= λ + (α− 1)x + αz︸ ︷︷ ︸
nα

−λ′

Hence, λ̂ = λ if and only if QNN
Λ (nα) ∈ Λ′. Therefore,

Pe , Pr[λ̂ 6= λ]

= Pr[QNN
Λ (nα) /∈ Λ′]

≤ Pr[QNN
Λ (nα) 6= 0]

= Pr[nα /∈ V(Λ)].
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The Role of the MMSE Estimator

The effective channel noise is nα (instead of z), and the second
moment per dimension of nα is

σ2(nα) ,
1

n
E [‖nα‖2]

= (α− 1)2σ2(x) + α2σ2(z)

= (α− 1)2P + α2N.

The optimal α∗ = P/(P + N), and

σ2(nα∗) =
PN

P + N
< min{P,N}.

Now, the achievable rate

R =
1

2
log2

(
P

σ2(nα∗)

)
=

1

2
log2

(
P
PN
P+N

)
=

1

2
log2

(
1 +

P

N

)
.
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Caution

Previous argument is heuristic, since nα∗ is not Gaussian...
To address this issue, we only need to prove that

Pr[‖nα∗‖2/n > σ2(nα∗)(1 + ε2)2]→ 0,

as n→∞.
This can be done with some additional steps.
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Conclusion

1 Fundamentals

2 Packing, Covering, Quantization, Modulation

3 Lattices and Linear Codes

4 Asymptopia

5 Communications Applications

Lattices give a structured approach to Gaussian information theory
problems, though the asymptotic results are still based on
random-(linear)-coding arguments.
Much work can be done in applying these tools to new problems,
and searching for constructions having tractable implementation
complexity.
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Appendix:

Further Schemes
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Outline

1 AWGN Channel Coding

2 Dirty-Paper Coding

3 Two-Way Relay Channel

4 Compute-and-Forward

5 Successive Compute-and-Forward
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Dirty-Paper Coding

TX + RX

S

m m̂

Z

X Y

In the dirty-paper channel Y = X + S + Z , where Z is an unknown
additive noise, and S is an interference signal known to the
transmitter but not to the receiver.
The channel input satisfies an average power constraint:

E‖x‖2 ≤ nP.

If S and Z are statistically independent Gaussian variables, then the
channel capacity

CDP = CAWGN =
1

2
log2

(
1 +

P

N

)
.
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Encoding

+

×

mod Λ′

s

−α

λ

u

x

x = [λ + u− αs] mod Λ′
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Decoding

× + Q(NN)
Λ mod Λ′y

−uα

λ̂

λ̂ = QNN
Λ (αy − u) mod Λ′,

where α is the MMSE coefficient.
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Error Probability

Let λ′ = QNN
Λ′ (λ + u− αs). Then,

αy − u = α(x + s + z)− u

= α(λ + u− αs− λ′︸ ︷︷ ︸
x

+s + z)− u

= λ + (α− 1)(λ + u− αs− λ′) + αz− λ′

= λ + (α− 1)x + αz︸ ︷︷ ︸
nα

−λ′

Once again, λ̂ = λ if and only if QNN
Λ (nα) ∈ Λ′. Therefore,

Pe , Pr[λ̂ 6= λ] ≤ Pr[nα /∈ V(Λ)].
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Achievable Rate

Recall that nα = (α− 1)x + αz with

σ2(nα) = (α− 1)2P + α2N.

Once again, the optimal α∗ = P/(P + N) and

σ2(nα∗) =
PN

P + N
.

Hence, the achievable rate

R =
1

2
log2

(
P

σ2(nα∗)

)
=

1

2
log2

(
1 +

P

N

)
.
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Gaussian Two-Way Relay Channel

User 1 User 2

Relay

λ1 λ2

λ̂2 λ̂1

+

+ +

Z1 Z2

Z

XBC
X1

X2

YMAC

Y1 Y2

YMAC = X1 + X2 + Z Y1 = XBC + Z1 Y2 = XBC + Z2

where Z ∼ N (0,N), Z1 ∼ N (0,N1), and Z2 ∼ N (0,N2).

Average power constraints:

1

n
E [‖x1‖2] ≤ P1,

1

n
E [‖x2‖2] ≤ P2, and

1

n
E [‖xBC‖2] ≤ PBC.

For simplicity, we first consider the symmetric case P1 = P2 = PBC

and N1 = N2 = N. 125



Transmission Strategy

Two-phase transmission strategy:

1 1st phase: the relay recovers

λ = [λ1 + λ2] mod Λ′

from the received signal yMAC.

2 2nd phase: the relay broadcasts λ to both nodes.

3 Clearly, λ1 = [λ− λ2] mod Λ′ and λ2 = [λ− λ1] mod Λ′.
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1st Phase

Encoding:

x1 = [λ1 + u1] mod Λ′

x2 = [λ2 + u2] mod Λ′

Decoding:

λ̂ = QNN
Λ (αy − u1 − u2) mod Λ′
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1st Phase: Error Probability

Let λ′i = QNN
Λ′ (λi + ui ) for i = 1, 2. Then,

αy − u1 − u2 = α(x1 + x2 + z)− u1 − u2

= α(
∑
i

(λi + ui − λ′i )︸ ︷︷ ︸
xi

+z)− u1 − u2

= λ1 + λ2 + (α− 1)
∑
i

(λi + ui − λ′i ) + αz− λ′1 − λ′2

= λ1 + λ2 + (α− 1)(x1 + x2) + αz︸ ︷︷ ︸
nα

−λ′1 − λ′2.

Note that λ̂ = [λ1 + λ2] mod Λ′ if and only if QNN
Λ (nα) ∈ Λ′.

Hence,
Pe ≤ Pr[nα ∈ V(Λ)].
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1st Phase: Achievable Rate

Note that

σ2(na) = (α−1)2
(
σ2(x1) + σ2(x2)

)
+α2σ2(z) = (α−1)22P+α2N.

The optimal α∗ = 2P/(2P + N) and

σ2(nα∗) =
2PN

2P + N
.

Hence, the achievable rate

R =
1

2
log2

(
P

σ2(nα∗)

)
=

1

2
log2

(
1

2
+

P

N

)
.
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Summary of the Symmetric Case

Since decoding in 1st phase is “harder” than the 2nd phase, we
have the following achievable rate

R1 = R2 =
1

2
log2

(
1

2
+

P

N

)
.

In this case, the cut-set bound = 1
2 log2

(
1 + P

N

)
.

The achievable rate approaches the cut-set bound at high SNR!
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Asymmetric Powers

Recall that the channel model is

YMAC = X1 + X2 + Z

Y1 = XBC + Z1

Y2 = XBC + Z2

where Z ∼ N (0,N), Z1 ∼ N (0,N1), and Z2 ∼ N (0,N2).

Asymmetric power constraints:

1

n
E [‖x1‖2] ≤ P1,

1

n
E [‖x2‖2] ≤ P2, and

1

n
E [‖xBC‖2] ≤ PBC.

Symmetric noise variance:

N1 = N2 = N

Key idea: use the same fine lattice at both users but different
coarse lattices, each sized to meet its user’s power constraint
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A Triple of Nested Lattices

Λ′1 ⊂ Λ′2 ⊂ Λ

with
σ2(Λ′1) = P1 and σ2(Λ′2) = P2,

R1 =
1

n
log2

det(Λ′1)

det(Λ)
and R2 =

1

n
log2

det(Λ′2)

det(Λ)
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1st Phase: Encodng

x1 = [λ1 + u1] mod Λ′1

x2 = [λ2 + u2] mod Λ′2

Clearly,
1

n
E [‖xi‖2] = σ2(Λ′i ) = Pi .
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1st Phase: Decoding

λ̂ = QNN
Λ (αy − u1 − u2) mod Λ′1

To understand the decoding, let λ′i = QNN
Λ′i

(λi + ui ) for i = 1, 2.

Then, once again,

αy − u1 − u2 = λ1 + λ2 + nα − λ′1 − λ′2,

where
nα , (α− 1)(x1 + x2) + αz.

Let λ = [λ1 + λ2 − λ′2] mod Λ′1. Then,

λ̂ = λ if and only if QNN
Λ (nα) ∈ Λ′1.
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1st Phase: Achievable Rates

Note that

σ2(na) = (α−1)2
(
σ2(x1) + σ2(x2)

)
+α2σ2(z) = (α−1)2(P1+P2)+α2N.

The optimal α∗ = (P1 + P2)/(P1 + P2 + N) and

σ2(nα∗) =
(P1 + P2)N

P1 + P2 + N
.

Hence, λ = [λ1 + λ2 − λ′2] mod Λ′1 can be decoded reliably if

R1 ≤
1

2
log2

(
P1

σ2(nα∗)

)
=

1

2
log2

(
P1

P1 + P2
+

P1

N

)
R2 ≤

1

2
log2

(
P2

σ2(nα∗)

)
=

1

2
log2

(
P2

P1 + P2
+

P2

N

)
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2nd Phase: Coding Scheme

Encoding: The relay sends

λ = [λ1 + λ2 − λ′2] mod Λ′1.

Decoding: Upon decoding λ, node 1 recovers λ2 and node 2
recovers λ1.
This is feasible, because

[λ− λ1] mod Λ′2 = λ2

and
[λ− λ2 + λ′2] mod Λ′1 = λ1.
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2nd Phase: Achievable Rates

λ = [λ1 + λ2 − λ′2] mod Λ′1 can be decoded reliably if

R1,R2 ≤
1

2
log2

(
1 +

PBC

N

)
.
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Asymmetric Powers: A Summary

The achievable rate region (R1,R2) is the intersection of the
previous two regions:

R1 ≤ min

{
1

2
log2

(
P1

P1 + P2
+

P1

N

)
,

1

2
log2

(
1 +

PBC

N

)}
R2 ≤ min

{
1

2
log2

(
P2

P1 + P2
+

P2

N

)
,

1

2
log2

(
1 +

PBC

N

)}
The above region turns out to be within half a bit of the cut-set
bound. See [Nam–Chung–Lee, IT 2010].
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Compute-and-Forward

User 1

User 2

User 3

Channel

X1

X2

X3

Relay 1

Relay 2

Relay 3

Y1

Y2

Y3

Dest.

R0

R0

R0

Yk =
L∑
`=1

hk`X` + Zk

Assume symmetric power constraint, due to hk`.
Previously, the relay is interested in the sum of the transmitted
codewords. Here, we expand the class of functions to include integer
linear combinations of codewords.
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Encoding

For each transmitter `

x` = [λ` + u`] mod Λ′
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Relay Decoding

t̂k = QNN
Λ

(
αkyk −

L∑
`=1

ak`u`

)
mod Λ′
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Error Probability

Let λ′` = QNN
Λ′ (λ` + u`) for ` = 1, . . . , L. Then,

αkyk −
∑
`

ak`u`

= αk

(∑
`

hk`x` + z

)
−
∑
`

ak`u`

= αk

∑
`

hk`(λ` + u` − λ′`︸ ︷︷ ︸
x`

) + z

−∑
`

ak`u`

=
∑
`

ak`λ` +
∑
`

(αkhk` − ak`)(λ` + u` − λ′`) + αkz︸ ︷︷ ︸
nαk

−
∑
`

ak`λ
′
`

Hence, t̂k = tk , [
∑

` ak`λ`] mod Λ′ if and only if QNN
Λ (nαk

) ∈ Λ′.
Therefore, Pe(tk) ≤ Pr[nαk

∈ V(Λ)].
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Achievable Rate

Recall that nαk
=
∑

`(αkhk` − ak`)x` + αkz with

σ2(nαk
) =

∑
`

(αkhk` − ak`)
2σ2(x`) + α2

kσ
2(z)

=
∑
`

(αkhk` − ak`)
2P + α2

kN

The optimal α∗k =
PakhT

k
P‖hk‖2+N

, where ak = (ak1, . . . , akL) and

hk = (hk1, . . . , hkL), and

σ2(nα∗k ) = P‖ak‖2 −
P2(akhT

k )2

P‖hk‖2 + N
.

Hence, tk , [
∑

` ak`λ`] mod Λ′ can be decoded reliably if

R ≤ 1

2
log2

(
P

σ2(nα∗k )

)
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Decoding at the Destination

Each relay k sends the label of tk to the destination.
The destination solves a system of linear equations of labels →
network coding
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Decoding at the Destination (Cont’d)

The integer coefficients ak` should be chosen by the relays such that
A = {ak`} is full rank over Fp.
The overall achievable rate

R ≤ min

{
1

2
log2

(
P

σ2(nα∗1 )

)
, . . . ,

1

2
log2

(
P

σ2(nα∗L )

)
,R0

}
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Finding the Best Integer Coefficients

Problem formulation:

maximize R

subject to ∀k : R ≤ 1

2
log2

(
P

σ2(nα∗k )

)
R ≤ R0

A = {ak`} is full rank over Fp

A greedy solution: each relay k minimizes σ2(nα∗k ) subject to ak 6= 0
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Finding the Best Integer Coefficients (Cont’d)

Note that

σ2(nα∗k ) = P‖ak‖2 −
P2(akhT

k )2

P‖hk‖2 + N

= ak

PIL −
P2

P‖hk‖2 + N
hT
k hk︸ ︷︷ ︸

Mk

 aT
k .

Since Mk is Hermitian and positive definite, it has a unique
Cholesky decomposition Mk = LkLT

k . Hence,

σ2(nα∗k ) = akMkaT
k = akLkLT

k aT
k = ‖akLk‖2.

So, minimize ‖akLk‖ subject to ak 6= 0 ⇒ shortest vector problem
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Compute-and-Forward: A Summary

Achievable rate:

R ≤ min
A

{
1

2
log2

(
P

σ2(nα∗1 )

)
, . . . ,

1

2
log2

(
P

σ2(nα∗L )

)
,R0

}
,

where A is full rank.

A greedy solution: relay k minimize ‖akLk‖ subject to ak 6= 0.
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Successive Compute-and-Forward

Consider the case of two transmitters and two relays.
Relay k recovers ak1λ1 + ak2λ2 mod Λ′ as described before.
However, the matrix

A =

[
a11 a12

a21 a22

]
is singular.

So, some relay should compute another integer linear combination.
A similar analysis, using the same by-now familiar tools, ensues!
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