Prof. Frank Kschiscang’s tutorial
- Lattice Coding for Signals and Networks by Ram Zamir (Cambridge University Press, 2014).
- C. Feng, D. Silva, and F. R. Kschischang, “An Algebraic Approach to Physical-Layer Network Coding,” IEEE Trans. Info. Theory, vol. 59, pp. 7576-7596, Nov. 2013; doi: https://doi.org/10.1109/TIT.2013.227426
- N. E. Tunali, Y.-C. Huang, J. J. Boutros, and K. R. Narayanan, “Lattices over Eisenstein Integers for Compute-and-Forward,” IEEE Trans. Info. Theory, vol. 61, pp. 5306-5321, Oct. 2015; doi:https://doi.org/10.1109/TIT.2015.2451623
Prof. Rajesh Sundaresan’s tutorial
- M. Mezard and A. Montanari, 2009. Chapter 14 on “Belief Propagation”. In Information, physics, and computation (pp. 291-326). Oxford University Press.
- Aldous, D. and Steele, J.M., 2004. “The objective method: probabilistic combinatorial optimization and local weak convergence”. In Probability on discrete structures (pp. 1-72). Springer, Berlin, Heidelberg.
Prof. Naftali Tishby’s tutorial
- The information bottleneck Method https://arxiv.org/pdf/physics/0004057.pdf
- The Gaussian Information Bottleneck http://www.jmlr.org/papers/volume6/chechik05a/chechik05a.pdf
- Deep learning and the Information Bottleneck principle https://arxiv.org/pdf/1503.02406.pdf
- Opening the black box of Deep Learning using Information https://arxiv.org/pdf/1703.00810.pdf
- The multi-levelinformation bottleneck https://arxiv.org/pdf/1711.05102.pdf
- Link to the Yandex talks https://youtu.be/bLqJHjXihK8https://youtu.be/RKvS958AqGY
- Link to the Stanford talk https://youtu.be/XL07WEc2TRI
- Links to the Simons talks https://youtu.be/EQTtBRM0sIs
- Related ICLR papers https://arxiv.org/pdf/1612.00410.pdf, https://arxiv.org/pdf/1611.01353.pdf, https://openreview.net/forum?id=ry_WPG-A-
Machine Learning references:
https://github.com/tensorflow/workshops
https://github.com/fchollet/deep-learning-with-python-notebooks
https://medium.com/tensorflow
https://js.tensorflow.org/
https://quickdraw.withgoogle.com/#
https://magenta.tensorflow.org/
https://distill.pub/
http://playground.tensorflow.org
https://github.com/fchollet/deep-learning-with-python-notebooks
https://medium.com/tensorflow
https://js.tensorflow.org/
https://quickdraw.withgoogle.com/#
https://magenta.tensorflow.org/
https://distill.pub/
http://playground.tensorflow.org
Deep Learning book: http://deeplearningbook.org
Tensorflow examples: https://github.com/aymericdamien/TensorFlow-Examples